Bienvenue dans la Collection HAL du Laboratoire de Mathématiques Blaise Pascal (LMBP - UMR 6620).

Le laboratoire de mathématiques Blaise Pascal (LMBP) est un centre de recherche publique en mathématiques. C'est une unité mixte de recherche de l’université Clermont Auvergne et du CNRS.
La politique scientifique en mathématiques du site clermontois est définie au sein du LMBP dans le cadre de la stratégie nationale du CNRS (via l’institut national des sciences mathématiques et de leurs interactions) et de la politique globale de site. Le laboratoire a pour mission la production de nouveau savoir en mathématiques. Il participe au dynamisme mathématique international. L’interaction avec l’environnement social, économique et culturel s’ajoute à cette mission principale.
La richesse principale du LMBP, qui lui permet d’atteindre l’objectif de production d’une recherche de haut niveau, est l’ensemble de ses chercheurs et enseignants-chercheurs. Le laboratoire accueille 60 chercheurs et enseignants-chercheurs permanents et une vingtaine de chercheurs non permanents.

Ceux-ci sont répartis en quatre équipes :

- Équations aux dérivées partielles et analyse numérique, dirigée par Arnaud Münch ;

- Géométrie, algèbre, algèbre d’opérateurs, dirigée par Julien Bichon ;

- Probabilités, analyse et statistiques, dirigée par Frédéric Bayart ;

- Théorie des nombres, dirigée par Éric Gaudron.

Les thèmes principaux de l’équipe équations aux dérivées partielles et analyse numérique sont la modélisation et la simulation numérique en mécanique des fluides, la contrôlabilité et les problèmes inverse, les équations de la cinétique et les problèmes hyperboliques, l’homogénéisation et l’analyse asymptotique.
Les thèmes de l’équipe géométrie, algèbre, algèbre d’opérateurs peuvent être regroupés en trois grands axes : algèbre et théorie des représentations, géométrie non-commutative et algèbres d’opérateurs, géométrie et topologie en petite dimension.
Les analystes de l’équipe probabilités, analyse et statistiques s’intéressent à l’analyse fonctionnelle, harmonique et multifractale. Les probabilistes étudient le calcul de Malliavin, les systèmes de particules, les processus de Markov, les équations aux dérivées partielles stochastiques, les grandes et moyennes déviations et les marches aléatoires perturbées.
Enfin, les statisticiens étudient la géométrie stochastique et l’inférence géométrique, les algorithmes statistiques du traitement du signal, les séries temporelles, la théorie statistique des champs aléatoires, les statistiques bayésiennes et la statistique des processus.
Les thèmes de l’équipe théorie des nombres peuvent être regroupés en deux grands axes : formes modulaires et géométrie diophantienne, analyse ultramétrique.

Le laboratoire édite une revue de recherche à comité de lecture international : les annales mathématiques Blaise Pascal. Ce journal publie des articles de recherche en mathématiques depuis 1962.

Le laboratoire organise tous les ans depuis 1971 une école d’été en probabilités à Saint-Flour. Cette école, la plus ancienne de la discipline, poursuit trois buts : présenter dans trois cours de haut niveau une synthèse des recherches effectuées dans un domaines des probabilités ou des statistiques ; permettre aux participants de présenter leurs travaux ; faciliter les rencontres entre jeunes probabilistes.

Les membres du laboratoire contribuent de façon essentielle aux formations en mathématiques de l'université Clermont Auvergne, organisées notamment au sein de l’UFR de mathématiques mais aussi à Polytech Clermont-Ferrand.

Rechercher dans la collection


Derniers dépôts


Consultation et citation

La propriété intellectuelle des documents déposés reste entièrement celle des auteurs. Les utilisateurs de HAL sont donc soumis aux règles du bon usage habituelles, dont le respect des travaux originaux et l'interdiction du pillage intellectuel.
Les documents peuvent être exploités à des fins d'enseignement et de recherche ; les utilisateurs s'engagent en revanche à indiquer la référence complète du document, indiquée sur la notice HAL de celui-ci.

 

Mentions légales

Les archives ouvertes de l'Université Clermont Auvergne ont été réalisées avec le concours du Centre pour la Communication Scientifique Directe, de l'Université Clermont Auvergne, et de la bibliothèque numérique de la Bibliothèque Université Clermont Auvergne.

         Directeur : Emmanuel ROYER

Directeur adjoint : Arnaud GUILLIN

Gestionnaire d'unité : Valerie SOURLIER

Coordonnées :

Campus Universitaire des Cézeaux
TSA 60026 - CS 60026
3, Place Vasarely
63178 AUBIERE
+ 33 4 73 40 70 50

Site web : http://math.univ-bpclermont.fr/

Documents avec texte intégral

412


Références bibliographiques

358


Politique des éditeurs

 
     

Consulter la politiques des éditeurs également sur

répartition par type de document


Nuage de mots-clés

Coupling Uniqueness Incompressible flows Durbin-Watson statistic Lyapunov functions Wasserstein distance Finite volume schemes Fractional Brownian motion Lyapunov condition Convection-diffusion equations Large deviations Hitting times Noncommutative geometry Dirichlet series Grandes déviations Non-regularity Drift-diffusion system Consistency Plasma Groupoids Bayesian estimators Renormalization Fokker-Planck equation Asymptotic analysis Limit theorems Deviation inequalities Logarithmic Sobolev inequality Porous medium Bivariant K-theory Normalization Limiting likelihood ratio process Existence Arc root Functional calculus Limiting distribution Self-similar solution Graph Moyenne tension Lie groupoids Bifurcating Markov chains Ergodicity Maximum likelihood estimator Hypocoercivity Cathode Conservation laws Change-point Magnetic fluid Moderate deviation principle Quasimodular forms Quadratic variation Geometric inference Navier-Stokes equations Multifractal analysis Site disorder Gestion Finite element methods Arc Poincaré inequality Geodesic distance Elliptic curves Martingale Fusible Hopf algebra Unstructured mesh Spinor zeta function Finite volume scheme Numerical simulation Finite volume Model selection SOM Semiconductors Hausdorff dimension Logarithmic Sobolev inequalities Heat transfer Fourier coefficients Pre-arcing time Boltzmann equation Siegel form Maximal ideals Numerical approximation Phase transition P-adic meromorphic functions Porous media Diffusion equations K-theory MUSCL method Immersed boundary method Quantum groups Essential spectrum Cellular aging Global weak solutions Null controllability Markov process Hydrodynamic limit Index theory Styles Packing dimension Arc électrique Finite volume method $C0$-semigroups

 

Besoin d'aide ?

Consultez ou téléchargez nos guides :

Guide Pratique // Premiers pas dans HAL
Guide Pratique // Mieux comprendre l'Open Access et HAL

Pour toute information et aide au dépôt des publications dans HAL Clermont Auvergne, ou pour toute demande de formation, contactez nous :

Jessica LEYRIT
Administratrice HAL UCA - Bibliothèque Numérique
jessica.leyrit@uca.fr
04 73 40 55 44

Anne LESOBRE
Correspondante HAL Sciences - BU des Cézeaux
anne.lesobre@uca.fr
04 73 40 78 83

Marjorie WERNER
Correspondante HAL Sciences - BU des Cézeaux
marjorie.werner@uca.fr
04 73 40 77 97

 

logo BCU