B. Levi and M. Werman, Long-term fructose consumption accelerates glycation and several age-related variables in male rats, J Nutr, vol.128, pp.1442-1449, 1998.

R. Mastrocola, M. Collino, and M. Rogazzo, Advanced glycation end products promote hepatosteatosis by interfering with SCAP-SREBP pathway in fructose-drinking mice, AJP: Gastrointestinal and Liver Physiology, vol.305, issue.6, pp.398-407, 2013.
DOI : 10.1152/ajpgi.00450.2012

S. Ballou, G. Lozanski, and S. Hodder, Quantitative and Qualitative Alterations of Acute-phase Proteins in Healthy Elderly Persons, Age and Ageing, vol.25, issue.3, pp.224-230, 1996.
DOI : 10.1093/ageing/25.3.224

H. Bruunsgaard, K. Andersen-ranberg, and B. Jeune, A High Plasma Concentration of TNF-?? Is Associated With Dementia in Centenarians, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.54, issue.7, pp.357-364, 1999.
DOI : 10.1093/gerona/54.7.M357

R. Roubenoff, T. Harris, and L. Abad, Monocyte Cytokine Production in an Elderly Population: Effect of Age and Inflammation, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.53, issue.1, pp.20-26, 1998.
DOI : 10.1093/gerona/53A.1.M20

J. Wei, H. Xu, and J. Davies, Increase of plasma IL-6 concentration with age in healthy subjects, Life Sciences, vol.51, issue.25, pp.1953-1956, 1992.
DOI : 10.1016/0024-3205(92)90112-3

C. Franceschi and J. Campisi, Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.69, issue.Suppl 1, pp.4-9, 2014.
DOI : 10.1093/gerona/glu057

S. Salvioli, D. Monti, and C. Lanzarini, Immune system, cell senescence, aging and longevity ? inflammaging reappraised, Curr Pharm Des, vol.19, pp.1675-1679, 2013.
DOI : 10.2174/1381612811319090015

URL : http://doi.org/10.2174/1381612811319090015

T. Singh and A. Newman, Inflammatory markers in population studies of aging, Ageing Research Reviews, vol.10, issue.3, pp.319-329, 2011.
DOI : 10.1016/j.arr.2010.11.002

N. Roglans, L. Vilà, and M. Farré, Impairment of hepatic Stat-3 activation and reduction of PPAR?? activity in fructose-fed rats, Hepatology, vol.53, issue.3, pp.778-788, 2007.
DOI : 10.1002/hep.21499

Q. Hu, X. Zhang, and Y. Pan, Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats, Biochemical Pharmacology, vol.84, issue.1, pp.113-125, 2012.
DOI : 10.1016/j.bcp.2012.03.005

T. Kawamura, K. Yoshida, and A. Sugawara, Impact of Exercise and Angiotensin Converting Enzyme Inhibition on Tumor Necrosis Factor-.ALPHA. and Leptin in Fructose-Fed Hypertensive Rats., Hypertension Research, vol.25, issue.6, pp.919-926, 2002.
DOI : 10.1291/hypres.25.919

A. Vasiljevi?, B. Bursa?, and A. Djordjevic, Hepatic inflammation induced by high-fructose diet is associated with altered 11??HSD1 expression in the liver of Wistar rats, European Journal of Nutrition, vol.54, issue.Suppl 2, 2014.
DOI : 10.1007/s00394-013-0641-4

F. Jameel, M. Phang, and L. Wood, Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation, Lipids in Health and Disease, vol.13, issue.1, 0195.
DOI : 10.1016/j.atherosclerosis.2004.10.018

I. Aeberli, P. Gerber, and M. Hochuli, Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial, American Journal of Clinical Nutrition, vol.94, issue.2, pp.479-485, 2011.
DOI : 10.3945/ajcn.111.013540

S. Liu, J. Manson, and J. Buring, Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women, Am J Clin Nutr, vol.75, pp.492-498, 2002.

T. Chavakis, A. Bierhaus, and P. Nawroth, RAGE (receptor for advanced glycation end products): a central player in the inflammatory response, Microbes and Infection, vol.6, issue.13, pp.1219-1225, 2004.
DOI : 10.1016/j.micinf.2004.08.004

K. Gaens, P. Niessen, and S. Rensen, Endogenous formation of N??-(carboxymethyl)lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis, Journal of Hepatology, vol.56, issue.3, pp.647-655, 2012.
DOI : 10.1016/j.jhep.2011.07.028

A. Ferrara, E. Barrett-connor, and J. Shan, Total, LDL, and HDL Cholesterol Decrease With Age in Older Men and Women : The Rancho Bernardo Study 1984??1994, Circulation, vol.96, issue.1, pp.37-43, 1984.
DOI : 10.1161/01.CIR.96.1.37

Y. Park, X. Sui, and J. Liu, The Effect of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins, Journal of the American College of Cardiology, vol.65, issue.19, pp.2091-2100, 2015.
DOI : 10.1016/j.jacc.2015.03.517

A. Vaarhorst, M. Beekman, and E. Suchiman, Lipid metabolism in long-lived families: the Leiden Longevity Study, AGE, vol.57, issue.9, pp.219-227, 2011.
DOI : 10.1007/s11357-010-9172-6

N. Al-rasheed, N. Al-rasheed, and Y. Bassiouni, Potential Protective Effects of Nigella Sativa and Allium Sativum Against Fructose-Induced Metabolic Syndrome in Rats, Journal of Oleo Science, vol.63, issue.8, pp.839-848, 2014.
DOI : 10.5650/jos.ess14027

T. Kazumi, H. Odaka, and T. Hozumi, Effects of Dietary Fructose or Glucose on Triglyceride Production and Lipogenic Enzyme Activities in the Liver of Wistar Fatty Rats, an Animal Model of NIDDM., Endocrine Journal, vol.44, issue.2, pp.239-245, 1997.
DOI : 10.1507/endocrj.44.239

C. Catena, G. Giacchetti, and M. Novello, Cellular mechanisms of insulin resistance in rats with Fructose-Induced hypertension, American Journal of Hypertension, vol.16, issue.11, pp.973-978, 2003.
DOI : 10.1016/S0895-7061(03)01002-1

D. 'alessandro, M. Chicco, A. Lombardo, and Y. , Fish oil reverses the altered glucose transporter, phosphorylation, insulin receptor substrate-1 protein level and lipid contents in the skeletal muscle of sucrose-rich diet fed rats, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.88, issue.2, pp.171-177, 2013.
DOI : 10.1016/j.plefa.2012.11.003

A. Schultz, D. Neil, and M. Aguila, Hepatic Adverse Effects of Fructose Consumption Independent of Overweight/Obesity, International Journal of Molecular Sciences, vol.31, issue.11, pp.21873-21886, 2013.
DOI : 10.3390/ijms141121873

J. Bantle, S. Raatz, and W. Thomas, Effects of dietary fructose on plasma lipids in healthy subjects, Am J Clin Nutr, vol.72, pp.1128-1134, 2000.

K. Teff, S. Elliott, and M. Tschöp, Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2963-2972, 2004.
DOI : 10.1210/jc.2003-031855

M. Maersk, A. Belza, and H. Stødkilde-jørgensen, Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study, American Journal of Clinical Nutrition, vol.95, issue.2, pp.283-289, 2012.
DOI : 10.3945/ajcn.111.022533

L. Oliveira, D. Santos, and S. Barbosa-da-silva, The inflammatory profile and liver damage of a sucrose-rich diet in mice, The Journal of Nutritional Biochemistry, vol.25, issue.2, pp.193-200, 2014.
DOI : 10.1016/j.jnutbio.2013.10.006

M. Yang, C. Wang, and H. Chen, Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet, The Journal of Nutritional Biochemistry, vol.12, issue.1, pp.14-20, 2001.
DOI : 10.1016/S0955-2863(00)00140-6

J. Lowndes, S. Sinnett, and Z. Yu, The Effects of Fructose-Containing Sugars on Weight, Body Composition and Cardiometabolic Risk Factors When Consumed at up to the 90th Percentile Population Consumption Level for Fructose, Nutrients, vol.36, issue.8, pp.3153-3168, 2014.
DOI : 10.1139/apnm-2012-0322

R. Fink, O. Kolterman, and J. Griffin, Mechanisms of Insulin Resistance in Aging, Journal of Clinical Investigation, vol.71, issue.6, pp.1523-1535, 1983.
DOI : 10.1172/JCI110908

J. Rowe, K. Minaker, and J. Pallotta, Characterization of the insulin resistance of aging., Journal of Clinical Investigation, vol.71, issue.6, pp.1581-1587, 1983.
DOI : 10.1172/JCI110914

E. Seo, S. Kim, and S. Lee, Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice, Nutrients, vol.137, issue.4, pp.3038-3053, 2015.
DOI : 10.1172/JCI17305

P. Mellen, A. Bleyer, and T. Erlinger, Serum Uric Acid Predicts Incident Hypertension in a Biethnic Cohort: The Atherosclerosis Risk in Communities Study, Hypertension, vol.48, issue.6, pp.1037-1042, 2006.
DOI : 10.1161/01.HYP.0000249768.26560.66

T. Perlstein, O. Gumieniak, and G. Williams, Uric Acid and the Development of Hypertension: The Normative Aging Study, Hypertension, vol.48, issue.6, pp.1031-1036, 2006.
DOI : 10.1161/01.HYP.0000248752.08807.4c

U. Khosla, S. Zharikov, and J. Finch, Hyperuricemia induces endothelial dysfunction, Kidney International, vol.67, issue.5, pp.1739-1742, 2005.
DOI : 10.1111/j.1523-1755.2005.00273.x

URL : http://doi.org/10.1111/j.1523-1755.2005.00273.x

T. Nakagawa, H. Hu, and S. Zharikov, A causal role for uric acid in fructose-induced metabolic syndrome, AJP: Renal Physiology, vol.290, issue.3, pp.625-631, 2006.
DOI : 10.1152/ajprenal.00140.2005

D. Park and P. Reuter-lorenz, The Adaptive Brain: Aging and Neurocognitive Scaffolding, Annual Review of Psychology, vol.60, issue.1, pp.173-196, 2009.
DOI : 10.1146/annurev.psych.59.103006.093656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359129

P. Aagaard, C. Suetta, and P. Caserotti, Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure, Scandinavian Journal of Medicine & Science in Sports, vol.20, issue.1, pp.49-64, 2010.
DOI : 10.1111/j.1600-0838.2009.01084.x

C. Harada, N. Love, M. Triebel, and K. , Normal Cognitive Aging, Clinics in Geriatric Medicine, vol.29, issue.4, pp.737-752, 2013.
DOI : 10.1016/j.cger.2013.07.002

D. Dickstein, D. Kabaso, and A. Rocher, Changes in the structural complexity of the aged brain, Aging Cell, vol.15, issue.3, pp.275-284, 2007.
DOI : 10.1073/pnas.0402147101

S. Resnick, D. Pham, and M. Kraut, Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain, J Neurosci, vol.23, pp.3295-3301, 2003.

P. Crouch, S. Harding, and A. White, Mechanisms of A?? mediated neurodegeneration in Alzheimer's disease, The International Journal of Biochemistry & Cell Biology, vol.40, issue.2, pp.181-198, 2008.
DOI : 10.1016/j.biocel.2007.07.013

D. Madden, J. Spaniol, and M. Costello, Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance, Journal of Cognitive Neuroscience, vol.23, issue.2, pp.289-302, 2009.
DOI : 10.1016/j.neuroimage.2006.01.015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676336

E. Rogalski, G. Stebbins, and C. Barnes, Age-related changes in parahippocampal white matter integrity: A diffusion tensor imaging study, Neuropsychologia, vol.50, issue.8, pp.1759-1765, 2012.
DOI : 10.1016/j.neuropsychologia.2012.03.033

X. Ye, X. Gao, and T. Scott, Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes, British Journal of Nutrition, vol.63, issue.09, pp.1423-1432, 2011.
DOI : 10.1093/geronb/55.2.S108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876724

A. Ross, T. Bartness, and J. Mielke, A high fructose diet impairs spatial memory in male rats, Neurobiology of Learning and Memory, vol.92, issue.3, pp.410-416, 2009.
DOI : 10.1016/j.nlm.2009.05.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737072

P. Cisternas, P. Salazar, and F. Serrano, Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1852, issue.11, pp.2379-2390, 2015.
DOI : 10.1016/j.bbadis.2015.08.016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369608

N. Jurdak, A. Lichtenstein, and R. Kanarek, Diet-induced obesity and spatial cognition in young male rats, Nutritional Neuroscience, vol.81, issue.2, pp.48-54, 2008.
DOI : 10.1037/0735-7044.116.6.1022

N. Jurdak and R. Kanarek, Sucrose-induced obesity impairs novel object recognition learning in young rats, Physiology & Behavior, vol.96, issue.1, pp.1-5, 2009.
DOI : 10.1016/j.physbeh.2008.07.023

Q. Meng, Z. Ying, and E. Noble, Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders, EBioMedicine, vol.7, pp.157-166, 2016.
DOI : 10.1016/j.ebiom.2016.04.008

URL : http://doi.org/10.1016/j.ebiom.2016.04.008

J. Mielke, C. Taghibiglou, and L. Liu, A biochemical and functional characterization of diet-induced brain insulin resistance, Journal of Neurochemistry, vol.64, issue.6, pp.1568-1578, 2005.
DOI : 10.1111/j.1471-4159.2005.03155.x

R. Agrawal and F. Gomez-pinilla, ???Metabolic syndrome??? in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition, The Journal of Physiology, vol.23, issue.12, 2012.
DOI : 10.1113/jphysiol.2012.230078

W. Noble, E. Planel, and C. Zehr, Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo, Proceedings of the National Academy of Sciences, vol.187, issue.2, pp.6990-6995, 2005.
DOI : 10.1016/j.expneurol.2004.02.008

M. Schubert, D. Gautam, and D. Surjo, Role for neuronal insulin resistance in neurodegenerative diseases, Proceedings of the National Academy of Sciences, vol.51, issue.12, pp.3100-3105, 2004.
DOI : 10.2337/diabetes.51.12.3384

L. Ho, W. Qin, and P. Pompl, Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease, The FASEB Journal, vol.18, pp.902-904, 2004.
DOI : 10.1096/fj.03-0978fje

C. Carvalho, S. Cardoso, and S. Correia, Metabolic Alterations Induced by Sucrose Intake and Alzheimer???s Disease Promote Similar Brain Mitochondrial Abnormalities, Diabetes, vol.61, issue.5, pp.1234-1242, 2012.
DOI : 10.2337/db11-1186

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331754

T. Hsu, V. Konanur, and L. Taing, Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats, Hippocampus, vol.35, issue.Suppl 1, pp.227-239, 2015.
DOI : 10.1002/hipo.22368

J. Beilharz, J. Maniam, and M. Morris, Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats, Brain, Behavior, and Immunity, vol.37, pp.134-141, 2014.
DOI : 10.1016/j.bbi.2013.11.016

. Erbas¸oerbas¸erbas¸o, V. Solmaz, and D. Aksoya, Cholecalciferol (vitamin D 3) improves cognitive dysfunction and reduces inflammation in a rat fatty liver model of metabolic syndrome, Life Sciences, vol.103, issue.2, pp.68-72, 2014.
DOI : 10.1016/j.lfs.2014.03.035

M. Engelhart, M. Geerlings, and J. Meijer, Inflammatory Proteins in Plasma and the Risk of Dementia, Archives of Neurology, vol.61, issue.5, pp.668-672, 2004.
DOI : 10.1001/archneur.61.5.668

C. Teunissen, M. Van-boxtel, and H. Bosma, Inflammation markers in relation to cognition in a healthy aging population, Journal of Neuroimmunology, vol.134, issue.1-2, pp.142-150, 2003.
DOI : 10.1016/S0165-5728(02)00398-3

J. Weaver, M. Huang, and M. Albert, Interleukin-6 and risk of cognitive decline: MacArthur Studies of Successful Aging, Neurology, vol.59, issue.3, pp.371-378, 2002.
DOI : 10.1212/WNL.59.3.371

K. Yaffe, K. Lindquist, and B. Penninx, Inflammatory markers and cognition in well-functioning African-American and white elders, Neurology, vol.61, issue.1, pp.76-80, 2003.
DOI : 10.1212/01.WNL.0000073620.42047.D7

. Erbas¸oerbas¸erbas¸o, H. Akseki, and H. Aktu?, Low-grade chronic inflammation induces behavioral stereotypy in rats, Metabolic Brain Disease, vol.25, issue.1???2, pp.739-746, 2015.
DOI : 10.1007/s11011-014-9630-4

M. López, L. Varela, and M. Vázquez, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance, Nature Medicine, vol.29, issue.9, pp.1001-1008, 2010.
DOI : 10.1038/nm.2207

J. Li, C. Ge, and M. Xu, Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats, Molecular Nutrition & Food Research, vol.461, issue.Suppl 1, pp.189-202, 2015.
DOI : 10.1002/mnfr.201400307

J. Li, O. W. Li, and W. , Oxidative Stress and Neurodegenerative Disorders, International Journal of Molecular Sciences, vol.814, issue.12, pp.24438-24475, 2013.
DOI : 10.1016/j.bbagen.2013.05.008

M. Coma, F. Guix, and G. Ill-raga, Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells, Neurobiology of Aging, vol.29, issue.7, pp.969-980, 2008.
DOI : 10.1016/j.neurobiolaging.2007.01.009

B. Su, X. Wang, and H. Lee, Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells, Neuroscience Letters, vol.468, issue.3, pp.267-271, 2010.
DOI : 10.1016/j.neulet.2009.11.010

M. Smith, S. Taneda, and P. Richey, Advanced Maillard reaction end products are associated with Alzheimer disease pathology., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5710-5714, 1994.
DOI : 10.1073/pnas.91.12.5710

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080055/pdf

R. Castellani, M. Smith, and G. Richey, Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease, Brain Research, vol.737, issue.1-2, pp.195-200, 1996.
DOI : 10.1016/0006-8993(96)00729-9

H. Lüth, V. Ogunlade, and B. Kuhla, Age- and Stage-dependent Accumulation of Advanced Glycation End Products in Intracellular Deposits in Normal and Alzheimer's Disease Brains, Cerebral Cortex, vol.15, issue.2, pp.211-220, 2005.
DOI : 10.1093/cercor/bhh123

V. Padmaraju, J. Bhaskar, P. Rao, and U. , Role of advanced glycation on aggregation and DNA binding properties of ?-synuclein, J Alzheimers Dis, vol.24, issue.2, pp.211-221, 2011.

M. Vitek, K. Bhattacharya, and J. Glendening, Advanced glycation end products contribute to amyloidosis in Alzheimer disease., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.4766-4770, 1994.
DOI : 10.1073/pnas.91.11.4766

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC43869/pdf

S. Ko, Y. Lin, and Y. Lin, Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species, Free Radical Biology and Medicine, vol.49, issue.3, pp.474-480, 2010.
DOI : 10.1016/j.freeradbiomed.2010.05.005

V. Haehling, S. Morley, J. Anker, and S. , An overview of sarcopenia: facts and numbers on prevalence and clinical impact, Journal of Cachexia, Sarcopenia and Muscle, vol.95, issue.675, pp.129-133, 2010.
DOI : 10.1007/s13539-010-0014-2

C. Beaudart, J. Reginster, and J. Slomian, Estimation of sarcopenia prevalence using various assessment tools, Experimental Gerontology, vol.61, pp.31-37, 2015.
DOI : 10.1016/j.exger.2014.11.014

D. Dardevet, D. Rémond, and M. Peyron, Muscle wasting and resistance of muscle anabolism: the 'anabolic threshold concept' for adapted nutritional strategies during sarcopenia. Sci World, 2012.

L. Mosoni, M. Valluy, and B. Serrurier, Altered response of protein synthesis to nutritional state and endurance training in old rats, Am J Physiol, vol.268, pp.328-335, 1995.

W. Mitchell, D. Wilkinson, and B. Phillips, Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition, Advances in Nutrition: An International Review Journal, vol.7, issue.4, pp.828-838, 2016.
DOI : 10.3945/an.115.011650

D. Dardevet, C. Sornet, and M. Balage, Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age, J Nutr, vol.130, pp.2630-2635, 2000.

C. Katsanos, H. Kobayashi, and M. Sheffield-moore, Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids, Am J Clin Nutr, vol.82, pp.1065-1073, 2005.

K. Timmerman, J. Lee, and H. Dreyer, Insulin Stimulates Human Skeletal Muscle Protein Synthesis via an Indirect Mechanism Involving Endothelial-Dependent Vasodilation and Mammalian Target of Rapamycin Complex 1 Signaling, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.8, pp.3848-3857, 2010.
DOI : 10.1210/jc.2009-2696

B. Rasmussen, S. Fujita, and R. Wolfe, Insulin resistance of muscle protein metabolism in aging, The FASEB Journal, vol.20, pp.768-769, 2006.
DOI : 10.1096/fj.05-4607fje

C. Lee, E. Boyko, and E. Strotmeyer, Association Between Insulin Resistance and Lean Mass Loss and Fat Mass Gain in Older Men without Diabetes Mellitus, Journal of the American Geriatrics Society, vol.88, issue.Spec No 2, pp.1217-1224, 2011.
DOI : 10.1111/j.1532-5415.2011.03472.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716256

C. Lee, E. Boyko, and E. Barrett-connor, Insulin Sensitizers May Attenuate Lean Mass Loss in Older Men With Diabetes, Diabetes Care, vol.34, issue.11, pp.2381-2386, 2011.
DOI : 10.2337/dc11-1032

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198278

B. Marzani, M. Balage, and A. Vénien, Antioxidant Supplementation Restores Defective Leucine Stimulation of Protein Synthesis in Skeletal Muscle from Old Rats, Journal of Nutrition, vol.138, issue.11, pp.2205-2211, 2008.
DOI : 10.3945/jn.108.094029

M. Balage, J. Averous, and D. Rémond, Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats, The Journal of Nutritional Biochemistry, vol.21, issue.4, pp.325-331, 2010.
DOI : 10.1016/j.jnutbio.2009.01.005

URL : https://hal.archives-ouvertes.fr/hal-01173409

I. Rieu, H. Magne, and I. Savary-auzeloux, Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats, The Journal of Physiology, vol.61, issue.22, 2009.
DOI : 10.1113/jphysiol.2009.178319

E. Gatineau, I. Savary-auzeloux, and C. Migné, Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis, Journal of Nutrition, vol.145, issue.5, pp.923-930, 2015.
DOI : 10.3945/jn.114.205583

N. Jaiswal, C. Maurya, and D. Arha, Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress, Apoptosis, vol.15, issue.4, pp.930-947, 2015.
DOI : 10.1007/s10495-015-1128-y

P. Phuwamongkolwiwat, T. Suzuki, and T. Hira, Fructooligosaccharide augments benefits of quercetin-3-O-??-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats, European Journal of Nutrition, vol.336, issue.Suppl 1, pp.457-468, 2014.
DOI : 10.1007/s00394-013-0546-2

J. Pfeilschifter, Role of cytokines in postmenopausal bone loss, Current Osteoporosis Reports, vol.252, issue.Suppl:20, pp.53-58, 2003.
DOI : 10.1007/s11914-003-0009-4

R. Mclean, Proinflammatory cytokines and osteoporosis, Current Osteoporosis Reports, vol.166, issue.Pt2, pp.134-139, 2009.
DOI : 10.1007/s11914-009-0023-2

K. Dahl, L. Ahmed, and R. Joakimsen, High-sensitivity C-reactive protein is an independent risk factor for non-vertebral fractures in women and men: The Troms?? Study, Bone, vol.72, pp.65-70, 2015.
DOI : 10.1016/j.bone.2014.11.012

B. Liang and Y. Feng, The association of low bone mineral density with systemic inflammation in clinically stable COPD, Endocrine, vol.123, issue.1, pp.190-195, 2011.
DOI : 10.1007/s12020-011-9583-x

P. De-pablo, M. Cooper, and C. Buckley, Association between bone mineral density and C-reactive protein in a large population-based sample, Arthritis & Rheumatism, vol.355, issue.8, pp.2624-2631, 2012.
DOI : 10.1002/art.34474

F. Wauquier, L. Leotoing, and V. Coxam, Oxidative stress in bone remodelling and disease, Trends in Molecular Medicine, vol.15, issue.10, pp.468-477, 2009.
DOI : 10.1016/j.molmed.2009.08.004

T. Sharma, N. Islam, and J. Ahmad, Correlation between bone mineral density and oxidative stress in postmenopausal women, Indian J Endocrinol Metab, vol.19, pp.491-497, 2015.

S. Yang, D. Feskanich, and W. Willett, Association Between Global Biomarkers of Oxidative Stress and Hip Fracture in Postmenopausal Women: A Prospective Study, Journal of Bone and Mineral Research, vol.359, issue.9321, pp.2577-2583, 2014.
DOI : 10.1002/jbmr.2302

R. Hanayama, H. Shimizu, and H. Nakagami, Fluvastatin improves osteoporosis in fructose-fed insulin resistant model rats through blockade of the classical mevalonate pathway and antioxidant action, Int J Mol Med, vol.23, pp.581-588, 2009.

J. Felice, M. Gangoiti, and M. Molinuevo, Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats, Metabolism, vol.63, issue.2, pp.296-305, 2014.
DOI : 10.1016/j.metabol.2013.11.002

E. Bass, C. Baile, and R. Lewis, Bone quality and strength are greater in growing male rats fed fructose compared with glucose, Nutrition Research, vol.33, issue.12, pp.1063-1071, 2013.
DOI : 10.1016/j.nutres.2013.08.006

A. Jatkar, I. Kurland, and S. Judex, Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism, Calcified Tissue International, vol.4, issue.1, pp.20-28, 2016.
DOI : 10.3389/fendo.2016.00102

R. Gelfand and R. Sherwin, Nitrogen conservation in starvation revisited: Protein sparing with intravenous fructose, Metabolism, vol.35, issue.1, pp.37-44, 1986.
DOI : 10.1016/0026-0495(86)90093-4

A. Jackson, I. Janssen, and X. Sui, Longitudinal changes in body composition associated with healthy ageing: men, aged 20???96 years, British Journal of Nutrition, vol.89, issue.07, pp.1085-1091, 2012.
DOI : 10.1111/j.1532-5415.2009.02677.x

C. Kiss, G. Poór, and J. Donáth, Prevalence of obesity in an elderly Hungarian population, European Journal of Epidemiology, vol.18, issue.7, pp.653-658, 2003.
DOI : 10.1023/A:1024994507436

A. Bazzocchi, D. Diano, and F. Ponti, Health and ageing: A cross-sectional study of body composition, Clinical Nutrition, vol.32, issue.4, pp.569-578, 2013.
DOI : 10.1016/j.clnu.2012.10.004

C. Carter, M. Cesari, and W. Ambrosius, Angiotensin-Converting Enzyme Inhibition, Body Composition, and Physical Performance in Aged Rats, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.59, issue.5, pp.416-423, 2004.
DOI : 10.1093/gerona/59.5.B416

U. Kyle, L. Genton, and D. Hans, Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years, European Journal of Clinical Nutrition, vol.55, issue.8, pp.663-672, 2001.
DOI : 10.1038/sj.ejcn.1601198

J. Mott, J. Wang, and J. Thornton, Relation between body fat and age in 4 ethnic groups, Am J Clin Nutr, vol.69, pp.1007-1013, 1999.

G. Bray, S. Nielsen, and B. Popkin, Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity, Am J Clin Nutr, vol.79, pp.537-543, 2004.

G. Bray and B. Popkin, Calorie-sweetened beverages and fructose: what have we learned 10 years later, Pediatric Obesity, vol.367, issue.4, pp.242-248, 2013.
DOI : 10.1111/j.2047-6310.2013.00171.x

P. Trumbo and C. Rivers, Systematic review of the evidence for an association between sugar-sweetened beverage consumption and risk of obesity, Nutrition Reviews, vol.72, issue.9, pp.566-574, 2014.
DOI : 10.1111/nure.12128

L. Dolan, S. Potter, and G. Burdock, Evidence-Based Review on the Effect of Normal Dietary Consumption of Fructose on Development of Hyperlipidemia and Obesity in Healthy, Normal Weight Individuals, Critical Reviews in Food Science and Nutrition, vol.80, issue.1, pp.53-84, 2009.
DOI : 10.1210/jc.2003-031855

C. White, S. Drummond, and A. Looy, Comparing advice to decrease both dietary fat and sucrose, or dietary fat only, on weight loss, weight maintenance and perceived quality of life, International Journal of Food Sciences and Nutrition, vol.63, issue.2, pp.282-294, 2010.
DOI : 10.3109/09637480903397355

A. Mooradian, J. Chehade, and R. Hurd, Monosaccharide-enriched diets cause hyperleptinemia without hypophagia, Nutrition, vol.16, issue.6, pp.439-441, 2000.
DOI : 10.1016/S0899-9007(00)00229-X

A. Shapiro, W. Mu, and C. Roncal, Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding, AJP: Regulatory, Integrative and Comparative Physiology, vol.295, issue.5, pp.1370-1375, 2008.
DOI : 10.1152/ajpregu.00195.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584858

A. Lindqvist, A. Baelemans, and C. Erlanson-albertsson, Effects of sucrose, glucose and fructose on peripheral and central appetite signals, Regulatory Peptides, vol.150, issue.1-3, pp.26-32, 2008.
DOI : 10.1016/j.regpep.2008.06.008

T. Yagi, H. Ueda, and H. Amitani, The Role of Ghrelin, Salivary Secretions, and Dental Care in Eating Disorders, Nutrients, vol.54, issue.12, pp.967-989, 2012.
DOI : 10.1001/archpsyc.59.12.1105

Z. Hu, S. Cha, and S. Chohnan, Hypothalamic malonyl-CoA as a mediator of feeding behavior, Proceedings of the National Academy of Sciences, vol.9, issue.6, pp.12624-12629, 2003.
DOI : 10.1038/nm873

M. Wolfgang, S. Cha, and A. Sidhaye, Regulation of hypothalamic malonyl-CoA by central glucose and leptin, Proceedings of the National Academy of Sciences, vol.280, issue.27, 2007.
DOI : 10.1074/jbc.M503181200

S. Cha, M. Wolfgang, and Y. Tokutake, Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake, Proceedings of the National Academy of Sciences, vol.2, issue.44, pp.16871-16875, 2008.
DOI : 10.1016/S0065-2571(64)80018-2

K. Page, O. Chan, and J. Arora, Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways, JAMA, vol.309, issue.1, pp.63-70, 2013.
DOI : 10.1001/jama.2012.116975

C. Murtagh-mark, K. Reiser, and R. Harris, Source of Dietary Carbohydrate Affects Life Span of Fischer 344 Rats Independent of Caloric Restriction, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.50, issue.3, pp.148-154, 1995.
DOI : 10.1093/gerona/50A.3.B148

J. Ruff, A. Suchy, and S. Hugentobler, Humanrelevant levels of added sugar consumption increase female mortality and lower male fitness in mice, Nat Commun, vol.4, 2013.