C. Sanz, J. F. Gautier, and H. Hanaire, Physical exercise for the prevention and treatment of type 2 diabetes, Diabetes & Metabolism, vol.36, issue.5, pp.346-351, 2010.
DOI : 10.1016/j.diabet.2010.06.001

L. Avery, D. Flynn, A. Van-wersch, F. F. Sniehotta, and M. I. Trenell, Changing Physical Activity Behavior in Type 2 Diabetes: A systematic review and meta-analysis of behavioral interventions, Diabetes Care, vol.35, issue.12, pp.2681-2689, 2012.
DOI : 10.2337/dc11-2452

D. Umpierre, P. A. Ribeiro, B. D. Schaan, and J. P. Ribeiro, Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis, Diabetologia, vol.91, issue.264???269, pp.242-251, 2013.
DOI : 10.1161/01.CIR.91.10.2596

C. K. Roberts, J. P. Little, and J. P. Thyfault, Modification of Insulin Sensitivity and Glycemic Control by Activity and Exercise, Medicine & Science in Sports & Exercise, vol.45, issue.10, pp.1868-1877, 2013.
DOI : 10.1249/MSS.0b013e318295cdbb

Y. Chen, F. A. Sloan, and A. P. Yashkin, Adherence to diabetes guidelines for screening, physical activity and medication and onset of complications and death, Journal of Diabetes and its Complications, vol.29, issue.8, pp.1228-1233, 2015.
DOI : 10.1016/j.jdiacomp.2015.07.005

N. A. Stephens and L. M. Sparks, Resistance to the Beneficial Effects of Exercise in Type 2 Diabetes: Are Some Individuals Programmed to Fail?, The Journal of Clinical Endocrinology & Metabolism, vol.100, issue.1, pp.43-52, 2015.
DOI : 10.1210/jc.2014-2545

Z. Kong, Comparison of High-Intensity Interval Training and Moderate-to-Vigorous Continuous Training for Cardiometabolic Health and Exercise Enjoyment in Obese Young Women: A Randomized Controlled Trial, PLOS ONE, vol.43, issue.5, p.158589, 2016.
DOI : 10.1371/journal.pone.0158589.s003

M. E. Jung, J. E. Bourne, M. R. Beauchamp, E. Robinson, and J. P. Little, High-Intensity Interval Training as an Efficacious Alternative to Moderate-Intensity Continuous Training for Adults with Prediabetes, Journal of Diabetes Research, vol.4, issue.2, p.191595, 2015.
DOI : 10.1249/mss.0000000000000261

M. E. Francois and J. P. Little, Effectiveness and Safety of High-Intensity Interval Training in Patients With Type 2 Diabetes, Diabetes Spectrum, vol.28, issue.1, pp.39-44, 2015.
DOI : 10.2337/diaspect.28.1.39

S. Cassidy, High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial, Diabetologia, vol.26, issue.1, pp.56-66, 2016.
DOI : 10.2337/diacare.26.4.986

E. Denou, K. Marcinko, M. G. Surette, G. R. Steinberg, and J. D. Schertzer, High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity, American Journal of Physiology - Endocrinology And Metabolism, vol.310, issue.11, pp.982-993, 2016.
DOI : 10.1152/ajpendo.00537.2015

K. Marcinko, High intensity interval training improves liver and adipose tissue insulin sensitivity, Molecular Metabolism, vol.4, issue.12, pp.903-915, 2015.
DOI : 10.1016/j.molmet.2015.09.006

URL : http://doi.org/10.1016/j.molmet.2015.09.006

S. M. Madsen, A. C. Thorup, K. Overgaard, and P. B. Jeppesen, High Intensity Interval Training Improves Glycaemic Control and Pancreatic beta Cell Function of Type 2 Diabetes Patients, PLoS One, vol.10, p.133286, 2015.

A. Fex, J. P. Leduc-gaudet, M. E. Filion, A. D. Karelis, and M. Aubertin-leheudre, Effect of Elliptical High Intensity Interval Training on Metabolic Risk Factor in Pre- and Type 2 Diabetes Patients: A Pilot Study, Journal of Physical Activity and Health, vol.12, issue.7, pp.942-946, 2015.
DOI : 10.1123/jpah.2014-0123

N. Shaban, K. A. Kenno, and K. J. Milne, The effects of a 2 week modified high intensity interval training program on the homeostatic model of insulin resistance (HOMA-IR) in adults with type 2 diabetes, J Sports Med Phys Fitness, vol.54, pp.203-209, 2014.

J. B. Gillen, Acute high-intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes, Diabetes, Obesity and Metabolism, vol.25, issue.Suppl. 1, pp.575-577, 2012.
DOI : 10.1519/JSC.0b013e3181fb4809

E. G. Trapp, D. J. Chisholm, J. Freund, and S. H. Boutcher, The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women, International Journal of Obesity, vol.81, issue.4, pp.684-691, 2008.
DOI : 10.1038/sj.ijo.0802727

F. M. Steckling, High Intensity Interval Training Reduces the Levels of Serum Inflammatory Cytokine on Women with Metabolic Syndrome, Experimental and Clinical Endocrinology & Diabetes, vol.124, issue.10, 2016.
DOI : 10.1055/s-0042-111044

J. P. Little, Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes, Journal of Applied Physiology, vol.111, issue.6, pp.1554-1560, 1985.
DOI : 10.1152/japplphysiol.00921.2011

A. J. Cochran, Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations, Experimental Physiology, vol.88, issue.5, pp.782-791, 2014.
DOI : 10.1371/journal.pone.0065382

URL : http://onlinelibrary.wiley.com/doi/10.1113/expphysiol.2013.077453/pdf

M. J. Gibala, J. P. Little, M. J. Macdonald, and J. A. Hawley, Physiological adaptations to low-volume, high-intensity interval training in health and disease, The Journal of Physiology, vol.546, issue.5, pp.1077-1084, 2012.
DOI : 10.1113/jphysiol.2002.034223

J. P. Little, A. Safdar, D. Bishop, M. A. Tarnopolsky, and M. J. Gibala, An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1?? and activates mitochondrial biogenesis in human skeletal muscle, AJP: Regulatory, Integrative and Comparative Physiology, vol.300, issue.6, pp.1303-1310, 2011.
DOI : 10.1152/ajpregu.00538.2010

D. Hoshino, Y. Yoshida, Y. Kitaoka, H. Hatta, and A. Bonen, High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle, Applied Physiology, Nutrition, and Metabolism, vol.38, issue.3, pp.326-333, 2013.
DOI : 10.1139/apnm-2012-0257

J. Szendroedi, E. Phielix, and M. Roden, The role of mitochondria in insulin resistance and type 2 diabetes mellitus, Nature Reviews Endocrinology, vol.404, issue.2, pp.92-103, 2011.
DOI : 10.1016/j.ab.2010.04.040

M. K. Hesselink, V. Schrauwen-hinderling, and P. Schrauwen, Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus, Nature Reviews Endocrinology, vol.53, issue.11, pp.633-645, 2016.
DOI : 10.2337/diabetes.53.6.1412

K. Marcinko and G. Steinberg, The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise, Experimental Physiology, vol.272, issue.12, pp.1581-1585, 2014.
DOI : 10.1074/jbc.272.20.13255

A. Zorzano, Regulation of mitofusin-2 expression in skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference????? Muscles as Molecular and Metabolic Machines, and has undergone the Journal???s usual peer review process., Applied Physiology, Nutrition, and Metabolism, vol.34, issue.3, pp.433-439, 2009.
DOI : 10.1139/H09-049

L. Boquist, B. Hellman, A. Lernmark, and I. B. Taljedal, INFLUENCE OF THE MUTATION "DIABETES" ON INSULIN RELEASE AND ISLET MORPHOLOGY IN MICE OF DIFFERENT GENETIC BACKGROUNDS, The Journal of Cell Biology, vol.62, issue.1, pp.77-89, 1974.
DOI : 10.1083/jcb.62.1.77

W. Jin and M. E. Patti, Genetic determinants and molecular pathways in the pathogenesis of Type??2 diabetes, Clinical Science, vol.116, issue.2, pp.99-111, 2009.
DOI : 10.1042/CS20080090

E. H. Leiter, Selecting the ???Right??? Mouse Model for Metabolic Syndrome and Type 2 Diabetes Research, Methods Mol Biol, vol.560, pp.1-17, 2009.
DOI : 10.1007/978-1-59745-448-3_1

R. B. Ceddia, H. A. Koistinen, J. R. Zierath, and G. Sweeney, Analysis of paradoxical observations on the association between leptin and insulin resistance, The FASEB Journal, vol.16, issue.10, pp.1163-1176, 2002.
DOI : 10.1096/fj.02-0158rev

L. Li, Mitochondrial Biogenesis and Peroxisome Proliferator-Activated Receptor-?? Coactivator-1?? (PGC-1??) Deacetylation by Physical Activity: Intact Adipocytokine Signaling Is Required, Diabetes, vol.60, issue.1, pp.157-167, 2011.
DOI : 10.2337/db10-0331

URL : http://diabetes.diabetesjournals.org/content/diabetes/60/1/157.full.pdf

N. A. Stephens, A transcriptional signature of ???exercise resistance??? in skeletal muscle of individuals with type 2 diabetes mellitus, Metabolism, vol.64, issue.9, pp.999-1004, 2015.
DOI : 10.1016/j.metabol.2015.06.008

J. E. Ostler, Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models, AJP: Endocrinology and Metabolism, vol.306, issue.6, pp.592-605, 2014.
DOI : 10.1152/ajpendo.00277.2013

T. O. Stolen, Interval Training Normalizes Cardiomyocyte Function, Diastolic Ca2+ Control, and SR Ca2+ Release Synchronicity in a Mouse Model of Diabetic Cardiomyopathy, Circulation Research, vol.105, issue.6, pp.527-536, 2009.
DOI : 10.1161/CIRCRESAHA.109.199810

S. Lee, Y. Park, K. C. Dellsperger, and C. Zhang, Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice, AJP: Heart and Circulatory Physiology, vol.301, issue.2, pp.306-314, 2011.
DOI : 10.1152/ajpheart.01306.2010

URL : http://ajpheart.physiology.org/content/ajpheart/301/2/H306.full.pdf

S. Lee, Y. Park, and C. Zhang, Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice, American Journal of Biomedical Sciences, vol.3, pp.241-252, 2011.
DOI : 10.5099/aj110400241

A. J. Trask, M. A. Delbin, P. S. Katz, A. Zanesco, and P. A. Lucchesi, Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: Impact of exercise training, Vascular Pharmacology, vol.57, issue.5-6, pp.187-193, 2012.
DOI : 10.1016/j.vph.2012.07.007

T. L. Broderick, C. R. Parrott, D. Wang, M. Jankowski, and J. Gutkowska, Expression of cardiac GATA4 and downstream genes after exercise training in the db/db mouse, Pathophysiology, vol.19, issue.3, pp.193-203, 2012.
DOI : 10.1016/j.pathophys.2012.06.001

J. Sennott, J. Morrissey, P. R. Standley, and T. L. Broderick, Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes, Pathophysiology, vol.15, issue.3, pp.173-179, 2008.
DOI : 10.1016/j.pathophys.2008.06.001

R. S. Lee-young, B. J. Canny, D. E. Myers, and G. K. Mcconell, AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training, Journal of Applied Physiology, vol.107, issue.1, pp.283-289, 1985.
DOI : 10.1152/japplphysiol.91208.2008

M. I. Hernandez-alvarez, Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1??/Mitofusin-2 Regulatory Pathway in Response to Physical Activity, Diabetes Care, vol.33, issue.3, pp.645-651, 2010.
DOI : 10.2337/dc09-1305

P. M. Siu, D. A. Donley, R. W. Bryner, and S. E. Alway, Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles, Journal of Applied Physiology, vol.94, issue.2, pp.555-560, 2003.
DOI : 10.1152/japplphysiol.00821.2002

URL : http://jap.physiology.org/content/jap/94/2/555.full.pdf

H. K. Karlsson, Insulin-Stimulated Phosphorylation of the Akt Substrate AS160 Is Impaired in Skeletal Muscle of Type 2 Diabetic Subjects, Diabetes, vol.54, issue.6, pp.1692-1697, 2005.
DOI : 10.2337/diabetes.54.6.1692

K. Morino, Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents, Journal of Clinical Investigation, vol.115, issue.12, pp.3587-3593, 2005.
DOI : 10.1172/JCI25151

A. Zisman, Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance, Nat Med, vol.6, pp.924-928, 2000.

J. K. Kim, Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4, Journal of Clinical Investigation, vol.108, issue.1, pp.153-160, 2001.
DOI : 10.1172/JCI10294

B. C. Fam, Normal muscle glucose uptake in mice deficient in muscle GLUT4, Journal of Endocrinology, vol.214, issue.3, pp.313-327, 2012.
DOI : 10.1530/JOE-12-0032

URL : http://joe.endocrinology-journals.org/content/214/3/313.full.pdf

K. F. Howlett, S. Andrikopoulos, J. Proietto, and M. Hargreaves, Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion, Physiological Reports, vol.6, issue.3, p.65, 2013.
DOI : 10.1038/78693

J. R. Zierath, Restoration of Hypoxia-stimulated Glucose Uptake in GLUT4-deficient Muscles by Muscle-specific GLUT4 Transgenic Complementation, Journal of Biological Chemistry, vol.233, issue.33, pp.20910-20915, 1998.
DOI : 10.1042/bj2330131

J. W. Ryder, Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice, The FASEB Journal, vol.13, pp.2246-2256, 1999.

E. M. Gibbs, Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4)., Journal of Clinical Investigation, vol.95, issue.4, pp.1512-1518, 1995.
DOI : 10.1172/JCI117823

J. T. Brozinick, GLUT4 Overexpression in db/db Mice Dose-Dependently Ameliorates Diabetes But Is Not a Lifelong Cure, Diabetes, vol.50, issue.3, pp.593-600, 2001.
DOI : 10.2337/diabetes.50.3.593

A. Leturque, M. Loizeau, S. Vaulont, M. Salminen, and J. Girard, Improvement of Insulin Action in Diabetic Transgenic Mice Selectively Overexpressing GLUT4 in Skeletal Muscle, Diabetes, vol.45, issue.1, pp.23-27, 1996.
DOI : 10.2337/diab.45.1.23

J. M. Ren, Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice., Journal of Clinical Investigation, vol.95, issue.1, pp.429-432, 1995.
DOI : 10.1172/JCI117673

S. Bao and W. Garvey, Exercise in transgenic mice overexpressing GLUT4 glucose transporters: Effects on substrate metabolism and glycogen regulation, Metabolism, vol.46, issue.11, pp.1349-1357, 1997.
DOI : 10.1016/S0026-0495(97)90243-2

P. T. Fueger, D. P. Bracy, C. M. Malabanan, R. R. Pencek, and D. H. Wasserman, Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation, AJP: Endocrinology and Metabolism, vol.286, issue.1, pp.77-84, 2004.
DOI : 10.1152/ajpendo.00309.2003

S. Ikemoto, K. S. Thompson, H. Itakura, M. D. Lane, and O. Ezaki, Expression of an insulin-responsive glucose transporter (GLUT4) minigene in transgenic mice: effect of exercise and role in glucose homeostasis., Proceedings of the National Academy of Sciences, vol.92, issue.3, pp.865-869, 1995.
DOI : 10.1073/pnas.92.3.865

V. N. Cunha, Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice, Cell Biochemistry and Function, vol.34, issue.8, pp.435-442, 2015.
DOI : 10.1111/j.1440-1681.2007.04635.x

S. L. Mcgee and M. Hargreaves, Histone modifications and exercise adaptations, Journal of Applied Physiology, vol.110, issue.1, pp.258-263, 1985.
DOI : 10.1152/japplphysiol.00979.2010

B. Egan, Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor ?? coactivator-1?? mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle, The Journal of Physiology, vol.98, issue.Suppl 1, pp.1779-1790, 2010.
DOI : 10.1016/S0092-8674(00)80611-X

O. J. Kemi, J. P. Loennechen, U. Wisloff, and O. Ellingsen, Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy, Journal of Applied Physiology, vol.93, issue.4, pp.1301-1309, 1985.
DOI : 10.1152/japplphysiol.00231.2002

URL : http://jap.physiology.org/content/jap/93/4/1301.full.pdf

D. Dardevet, C. Sornet, M. Balage, and J. Grizard, Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age, J Nutr, vol.130, pp.2630-2635, 2000.

E. J. Stephenson, Skeletal muscle respiratory capacity is enhanced in rats consuming an obesogenic Western diet, AJP: Endocrinology and Metabolism, vol.302, issue.12, pp.1541-1549, 2012.
DOI : 10.1152/ajpendo.00590.2011

D. Pesta and E. Gnaiger, High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle, Methods Mol Biol, vol.810, pp.25-58, 2012.
DOI : 10.1007/978-1-61779-382-0_3

G. Ennequin, Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats, The Journal of Physiology, vol.120, issue.12, pp.2665-2677, 2015.
DOI : 10.1242/jcs.03372

URL : https://hal.archives-ouvertes.fr/hal-01217628

J. E. Gilda and A. Gomes, Western Blotting Using In-Gel Protein Labeling as a Normalization Control: Stain-Free Technology, Methods Mol Biol, vol.1295, pp.381-391, 2015.
DOI : 10.1007/978-1-4939-2550-6_27