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Specific Detection and Localization of Microsporidian Parasites in
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We designed fluorescence in situ hybridization probes for two distinct microsporidian clades and demonstrated their applica-
tion in detecting, respectively, Nosema/Vairimorpha and Dictyoceola species. We used them to study the vertical transmission of
two microsporidia infecting the amphipod Gammarus duebeni.

Microsporidia are important parasites of invertebrates that
cause losses in beneficial insects such as pollinators (1, 2)

and farmed Crustacea (3, 4), and they are also utilized for biolog-
ical control of insect pests (5). While many microsporidian species
are transmitted horizontally to new hosts, others are transmitted
vertically (i.e., female-to-offspring transmission) or by a combi-
nation of the two modes (6, 7). Such variation in the mode of
transmission affects the evolution of virulence, which is generally
reduced in vertically transmitted microsporidia (6, 7). For exam-
ple, parasites of the genus Nosema that infect crustacean hosts
cause little pathogenesis; they form low-burden localized infec-
tions in the reproductive tissue, are vertically transmitted, and
cause feminization of the host offspring, leading to distorted sex
ratios (8, 9). In contrast, Vairimorpha disparis (also from the
Nosema clade) causes high-density infection of the fat body, lead-
ing to death of the gypsy moth host and subsequent horizontal
transmission (10).

Understanding and managing the impact of these parasites on
their hosts requires an ability to both discriminate between strains
and map the distribution and burden within host tissues. PCR-
based detection of microsporidian parasites is well established and
can be combined with either restriction fragment length polymor-
phism (11) or sequencing analysis (12) to identify parasite species.
Although quantitative PCR techniques have been developed to
monitor parasite burdens in hosts (13), they are a weak tool for the
investigation of tissue distribution. Transmission electron mi-
croscopy (TEM) is an excellent tool for the visualization of para-
sites within tissues but is very time-consuming when looking at
the distribution of microorganisms across a whole organism or
whole tissues because only thin (�100-nm) sections of tissues can
be visualized. Since its development as a method to detect micro-
organisms (14), fluorescence in situ hybridization (FISH) has
been used to detect and localize many endosymbionts, notably in
arthropod hosts (15, 16). It allows the precise localization and
distribution of microorganisms within a particular tissue, as well
as evaluation of their density. FISH probes target particular re-
gions of the rRNA and can be designed to detect a broad range of
microorganisms (if the targeted rRNA region is well conserved
across these microorganisms) or to be very specific (if the targeted
region is unique); they are thus considered to be phylogenetic
stains (17). While this method is widely used to detect and localize
bacteria, only a few studies have applied this method to micro-
sporidia (18–20). This is partly due to the fact that microsporidia

are eukaryotes with unusual rRNAs (21, 22) and many of the tools
developed for bacteria to design FISH probes are therefore unsuit-
able (23–25).

In this article, we present two FISH probes designed to detect
microsporidia of the genera Nosema/Vairimorpha and Dictyocoela.
We tested the specificity of these probes by applying them to three
economically important microsporidia of the genus Nosema and to
two unrelated clades. We then used these probes to study the distri-
bution of two vertically transmitted microsporidia, Nosema granulo-
sis and Dictyocoela duebenum (26), within the ovaries of the crusta-
cean host Gammarus duebeni in order to elucidate the route of
transmission to developing oocytes.

To design these probes, we first used MAFFT (27) to align 34
microsporidian small rRNA sequences across the microsporidian
phylogeny, including several Dictyocoela and Nosema species (ac-
cession numbers are shown in Fig. 1) in order to identify the
regions that were conserved among the members of the genus of
interest but distinct from others. rRNA regions are known to be
more or less accessible to FISH probes (23). As an accessibility
map does not exist yet for microsporidia, whose small rRNA is
distinct in structure from that of other eukaryotes and from that of
bacteria, we chose to target rRNA regions that are known to be ac-
cessible for both yeasts and bacteria. These regions were identified for
our species by using the secondary structure of the microsporidian
small subunit (SSU) found at the comparative RNA website (http:
//www.rna.ccbb.utexas.edu/) (28). Finally, we checked the in silico
specificity of the two probes by using ProbeCheck (29) and BLAST.
By using this method, we designed two probes, Ng02 (ATAGGTCA
AGTTTCGCCC), with specificity for the Nosema/Vairimorpha
clade, and Dd04 (GACCTTGGTCCTGGTAGC), with specificity
to the genus Dictyoceola. The probes matching the targeted areas
of each species are illustrated in Fig. 1.

We used the probes on tissues of G. duebeni infected with either
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D. duebenum or N. granulosis (infection confirmed by PCR-RLFP
[11]). Tissues were fixed with acetone or Carnoy fixative and held
at �20°C until use. The tissues were subsequently rehydrated in
PBS-T (phosphate-buffered saline [pH 7.4] with 0.05% Triton
X-100), incubated in a 1:1 solution of PBS-T and hybridization
buffer (HB; 20 mM Tris-HCl [pH 8], 0.9 M NaCl, 0.01% SDS, 1�
Denhardt’s solution, 30% [for Dd04] or 35% [for Ng02] deion-
ized formamide [P040.1; Roth]) for 10 min at 20°C, in HB for 20
min at 20°C, and then in HB for 30 min at 45°C before the addition
of 5=-Cy5-labeled probes (Jena Bioscience) Ng02 and Dd04 at
concentrations of 0.5 �M (Ng02) and 0.25 �M (Dd04). Following
incubation at 45°C overnight, samples were washed in HB at 45°C
2 � 30 min and at 20°C 1 � 30 min and in HB–PBS-T at 20°C 1 �
30 min, stained for 30 min with PBS-T containing 300 nM 4=,6-
diamidino-2-phenylindole (DAPI), and mounted in 40% glyc-
erol. Images were taken with a Zeiss LSM510 confocal inverted
microscope (Carl Zeiss Ltd., Herts, United Kingdom) and pro-
cessed using Gimp. DAPI staining was visualized with a 405-nm
laser and a 420- to 480-nm bandpass filter and Cy5-labeled probes
using a 633-nm laser and a 650-nm low-pass filter. Autofluores-
cence of spores was transiently visible with a 488-nm laser and a

530- to 600-nm bandpass filter. Using our probes, we were able
to detect all stages of these microsporidia (vegetative and spore
stages; see Fig. S1 and S2 in the supplemental material). FISH is
therefore a more powerful method to detect microsporidia than
is immunofluorescence, which detects only spores (12, 30).

We assessed the specificity of these probes by applying them to
G. duebeni whole-mount embryos infected with N. granulosis or
D. duebenum and to spores of five other microsporidian species
that had been stored in 50% glycerol (31). These included N. cera-
nae and N. apis, both of which cause significant disease in honey-
bees (1); Vairimorpha disparis, which also belongs to the Nosema
clade (32) and is a parasite studied for biological control of the
gypsy moth (5); and parasites from two additional unrelated
clades, Paranosema whitei, which is a parasite of flour beetles (33),
and Thelohania contejeani, which causes porcelain disease in cray-
fish (34). The protocol described above was used. The pattern of
hybridization perfectly matched the phylogenetic associations
(Fig. 1; see Fig. S3 and S4 in the supplemental material). Dd04
hybridized only with D. duebenum, and there was no cross-reac-
tivity with other genera. Ng02 reacted with all three members of
the Nosema clade; N. apis, N. ceranae, and V. disparis, and there

FIG 1 Use of probes Ng02 and Dd04 as phylogenetic markers. (A). Phylogenetic tree showing the relationships of microsporidian species belonging to various
clades defined by Vossbrinck and Debrunner-Vossbrinck (39). The species with which probes Ng02 and Dd04 hybridized are highlighted in light and dark gray,
respectively. The alignment of the small-subunit rDNA sequences of these 34 microsporidian species was performed with MAFFT (27). The tree, obtained by
using the neighbor-joining method, was based on 578 positions. (B) Alignment of the microsporidian species in the tree in panel A focusing on the rRNA regions
targeted by probes Ng02 and Dd04. The target region of each probe is shown. Periods indicate nucleotides in that region that match the corresponding probe,
while letters indicate mismatches. A dash indicates a deletion in the SSU sequence. The species tested in this study are in bold. A check mark indicates that a
hybridization signal was observed, and a boxed X indicates absence of hybridization.
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was no cross-reactivity with other genera. These results not only
show that these probes can be used as phylogenetic tools to detect
Dictyocoela or Nosema species but highlight their potential use to
detect microsporidian species of economic relevance. These
probes could also be used to detect these species in environmental
samples such as honey, soil, or water in order to follow their
spread in the environment.

Finally, we applied these probes to whole-mount ovarian tis-
sues of G. duebeni to investigate the mechanism of transovarial
transmission by N. granulosis and D. duebenum. We observed a
high density of N. granulosis spores in follicle cells (see Fig. S5 in
the supplemental material), which are adjacent to developing
oocytes, in accord with previous TEM studies that suggested that
spores invade secondary oocytes during their maturation (35).
Furthermore, we observed a similar proliferation of D. duebenum
spores in follicle cells, as well as the presence of meronts in matur-
ing oocytes (Fig. 2). These data led us to conclude that these two
phylogenetically distant microsporidia have evolved convergent
vertical transmission strategies.

Our study shows that FISH can be applied successfully to detect
and precisely localize microsporidian species within host tissues.
So far, most of the few studies that have applied FISH to microspo-
ridia have focused on the detection of spores of microsporidia
infecting vertebrates, especially humans (18, 19, 36). Our study
shows that not only the spores but all of the stages of the microspo-
ridian life cycle can be detected by FISH (see Fig. S1 and S2 in the
supplemental material). Moreover, previous studies applied this
method to stool samples, intestinal biopsy samples, or environ-
mental samples (18, 36). Our study shows that this method is also
suitable for use with whole-mount tissues, allowing the study of

the dynamics of cell invasion of microsporidia within tissues. Ap-
plications of FISH to microsporidia are broad. For example, coin-
fections with different microsporidian species have been reported
in many hosts (13, 37, 38). With the use of specific probes, one
could easily determine the tissue specificity of multiple microspo-
ridian species within a host to understand their respective impact
on the host’s biology. Moreover, as vertical transmission is wide-
spread among microsporidia (9), FISH could help to decipher the
various mechanisms used to achieve such vertical transmission.
Owing to the diversity of rRNA sequences in microsporidia (39),
FISH probes could also be designed for other important clades or
species. We believe that the FISH method applied to microspo-
ridia is only at its beginning and that a variety of studies will ben-
efit from its application.

Probe sequence accession numbers. The sequences of probes
Ng02 and Dd04 have been deposited in ProbeBase (29) under
accession numbers pB-03882 and pB-03883.
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