A. P. Lothrop, M. P. Torres, and S. M. Fuchs, Deciphering post-translational modification codes, FEBS Letters, vol.26, issue.8, pp.1247-1257, 2013.
DOI : 10.1101/gad.192781.112

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2013.01.047/pdf

F. Wold, In Vivo Chemical Modification of Proteins (Post-Translational Modification), Annual Review of Biochemistry, vol.50, issue.1, pp.783-814, 1981.
DOI : 10.1146/annurev.bi.50.070181.004031

A. Bock and T. C. Stadtman, Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGAdirected co-translational mechanism, BioFactors, vol.1, issue.3, pp.245-250, 1988.

T. C. Stadtman, Selenocysteine, Annual Review of Biochemistry, vol.65, issue.1, pp.83-100, 1996.
DOI : 10.1146/annurev.bi.65.070196.000503

M. Ibba and D. Söll, Genetic Code: Introducing Pyrrolysine, Current Biology, vol.12, issue.13, pp.464-466, 2002.
DOI : 10.1016/S0960-9822(02)00947-8

URL : http://doi.org/10.1016/s0960-9822(02)00947-8

G. Srinivasan, C. M. James, and J. A. Krzycki, Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA, Science, vol.296, issue.5572, pp.1459-1462, 2002.
DOI : 10.1126/science.1069588

A. Bock, K. Forchhammer, and J. Heider, Selenocysteine: the 21st amino acid, Molecular Microbiology, vol.87, issue.3, pp.515-520, 1991.
DOI : 10.1016/0003-9861(86)90507-2

Y. Zhang, H. Romero, G. Salinas, and V. N. Gladyshev, Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues, Genome Biology, vol.7, issue.10, p.94, 2006.
DOI : 10.1186/gb-2006-7-10-r94

M. Rother, A. Resch, R. Wilting, and A. Böck, Selenoprotein synthesis in archaea, BioFactors, vol.257, issue.1-4, pp.4-75, 2001.
DOI : 10.1007/978-1-4615-2391-8_9

T. Stock and M. Rother, Selenoproteins in Archaea and Gram-positive bacteria, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1520-1532, 2009.
DOI : 10.1016/j.bbagen.2009.03.022

M. A. Gaston, R. Jiang, and J. A. Krzycki, Functional context, biosynthesis, and genetic encoding of pyrrolysine, Current Opinion in Microbiology, vol.14, issue.3, pp.342-349, 2011.
DOI : 10.1016/j.mib.2011.04.001

M. Rother and J. A. Krzycki, Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea, Archaea, vol.84, issue.8, 2010.
DOI : 10.1073/pnas.0912072106

M. A. Gaston, L. Zhang, K. B. Green-church, and J. A. Krzycki, The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine, Nature, vol.8, issue.7340, pp.647-650, 2011.
DOI : 10.1186/1471-2105-8-133

D. G. Longstaff, R. C. Larue, and J. E. Faust, A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.1021-1026, 2007.
DOI : 10.1021/bi00805a005

J. A. Krzycki, The path of lysine to pyrrolysine, Current Opinion in Chemical Biology, vol.17, issue.4, pp.619-625, 2013.
DOI : 10.1016/j.cbpa.2013.06.023

F. Quitterer, P. Beck, A. Bacher, and M. Groll, Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD), Angewandte Chemie International Edition, vol.143, issue.144, pp.7033-7037, 2013.
DOI : 10.1016/S0009-2797(02)00164-3

K. Nozawa, P. O-'donoghue, and S. Gundllapalli, Pyrrolysyl-tRNA synthetase???tRNAPyl structure reveals the molecular basis of orthogonality, Nature, vol.14, issue.7233, pp.1163-1167, 2009.
DOI : 10.1038/nature07611

C. Polycarpo, A. Ambrogelly, and A. Bérubé, An aminoacyl-tRNA synthetase that specifically activates pyrrolysine, Proceedings of the National Academy of Sciences, vol.222, issue.1, pp.12450-12454, 2004.
DOI : 10.1016/0022-2836(91)90740-W

A. Théobald-dietrich, M. Frugier, R. Giegé, and J. Rudinger-thirion, Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA, Nucleic Acids Research, vol.32, issue.3, pp.1091-1096, 2004.
DOI : 10.1093/nar/gkh266

S. Herring, A. Ambrogelly, C. R. Polycarpo, and D. Söll, Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase, Nucleic Acids Research, vol.35, issue.4, pp.1270-1278, 2007.
DOI : 10.1093/nar/gkl1151

J. M. Kavran, S. Gundllapalli, P. O-'donoghue, M. Englert, D. Söll et al., Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation, Proceedings of the National Academy of Sciences, vol.28, issue.5, pp.11268-11273, 2007.
DOI : 10.1080/10635150390235520

M. M. Lee, R. Jiang, R. Jain, R. C. Larue, J. Krzycki et al., Structure of Desulfitobacterium hafniense PylSc, a pyrrolysyl-tRNA synthetase, Biochemical and Biophysical Research Communications, vol.374, issue.3, pp.470-474, 2008.
DOI : 10.1016/j.bbrc.2008.07.074

T. Yanagisawa, R. Ishii, R. Fukunaga, T. Kobayashi, K. Sakamoto et al., Crystallographic Studies on Multiple Conformational States of Active-site Loops in Pyrrolysyl-tRNA Synthetase, Journal of Molecular Biology, vol.378, issue.3, pp.634-652, 2008.
DOI : 10.1016/j.jmb.2008.02.045

T. Yanagisawa, T. Sumida, R. Ishii, and S. Yokoyama, A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site, Acta Crystallographica Section D Biological Crystallography, vol.38, issue.1, pp.5-15, 2013.
DOI : 10.1093/nar/gkp1254

L. Prat, I. U. Heinemann, H. R. Aerni, J. Rinehart, P. O. Donoghue et al., Carbon source-dependent expansion of the genetic code in bacteria, Proceedings of the National Academy of Sciences, vol.28, issue.10, pp.21070-21075, 2012.
DOI : 10.1093/molbev/msr121

L. Paul, D. J. Ferguson-jr, and J. A. Krzycki, The Trimethylamine Methyltransferase Gene and Multiple Dimethylamine Methyltransferase Genes of Methanosarcina barkeri Contain In-Frame and Read-Through Amber Codons, Journal of Bacteriology, vol.182, issue.9, pp.2520-2529, 2000.
DOI : 10.1128/JB.182.9.2520-2529.2000

J. A. Soares, L. Zhang, and R. L. Pitsch, The Residue Mass of L-Pyrrolysine in Three Distinct Methylamine Methyltransferases, Journal of Biological Chemistry, vol.1647, issue.44, pp.36962-36969, 2005.
DOI : 10.1074/jbc.M501458200

A. Mihajlovski, M. Alric, and J. Brugère, A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene, Research in Microbiology, vol.159, issue.7-8, pp.516-521, 2008.
DOI : 10.1016/j.resmic.2008.06.007

URL : https://hal.archives-ouvertes.fr/hal-01612747

A. Mihajlovski, J. Doré, F. Levenez, M. Alric, and J. Brugère, Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity, Environmental Microbiology Reports, vol.64, issue.2, pp.272-280, 2010.
DOI : 10.1099/00221287-148-11-3521

T. Iino, H. Tamaki, and S. Tamazawa, Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata, Microbes and Environments, vol.28, issue.2, pp.244-250, 2013.
DOI : 10.1264/jsme2.ME12189

K. Paul, J. O. Nonoh, L. Mikulski, and A. Brune, "Methanoplasmatales," Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens, Applied and Environmental Microbiology, vol.78, issue.23, pp.8245-8253, 2012.
DOI : 10.1128/AEM.02193-12

G. Borrel, P. W. O-'toole, P. Peyret, J. F. Brugère, and S. Gribaldo, Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis, Genome Biology and Evolution, vol.5, issue.10, pp.1769-1780, 2013.
DOI : 10.1093/gbe/evt128

URL : https://hal.archives-ouvertes.fr/hal-01612746

G. Borrel, H. M. Harris, and W. Tottey, Genome Sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens, Journal of Bacteriology, vol.194, issue.24, pp.6944-6945, 2012.
DOI : 10.1128/JB.01867-12

URL : https://hal.archives-ouvertes.fr/hal-01612754

A. Gorlas, C. Robert, G. Gimenez, M. Drancourt, and D. Raoult, Complete genome sequence of Methanomassiliicoccus luminyensis, the largest genome of a human-associated Archaea species Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Journal of Bacteriology International Journal of Systematic and Evolutionary Microbiology, vol.194, issue.62, pp.4745-1902, 2012.

G. Borrel, H. M. Harris, and N. Parisot, Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces, Genome Announcements, vol.35, issue.suppl_2, 2013.
DOI : 10.1093/nar/gkm360

J. F. Brugère, G. Borrel, N. Gaci, W. Tottey, P. W. Toole et al., Archaebiotics, Gut Microbes, vol.137, issue.1, 2013.
DOI : 10.1128/JB.00420-09

M. Poulsen, C. Schwab, and B. B. Jensen, Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen, Nature Communications, vol.19, issue.167, 1428.
DOI : 10.1016/0300-9084(96)84768-7

R. K. Aziz, D. Bartels, and A. Best, The RAST Server: Rapid Annotations using Subsystems Technology, BMC Genomics, vol.9, issue.1, p.75, 2008.
DOI : 10.1186/1471-2164-9-75

K. Rutherford, J. Parkhill, and J. Crook, Artemis: sequence visualization and annotation, Bioinformatics, vol.16, issue.10, pp.944-945, 2000.
DOI : 10.1093/bioinformatics/16.10.944

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

M. A. Larkin, G. Blackshields, and N. P. Brown, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

C. Notredame, D. G. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

A. Wilm, D. G. Higgins, and C. Notredame, R-Coffee: a method for multiple alignment of non-coding RNA, Nucleic Acids Research, vol.36, issue.9, 2008.
DOI : 10.1093/nar/gkn174

A. R. Gruber, R. Lorenz, S. H. Bernhart, R. Neuböck, and I. L. Hofacker, The Vienna RNA Websuite, Nucleic Acids Research, vol.36, issue.Web Server, pp.70-74, 2008.
DOI : 10.1093/nar/gkn188

J. S. Reuter and D. H. Mathews, RNAstructure: software for RNA secondary structure prediction and analysis, BMC Bioinformatics, vol.11, issue.1, 2010.
DOI : 10.1186/1471-2105-11-129

A. Criscuolo and S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evolutionary Biology, vol.10, issue.1, 2010.
DOI : 10.1186/1471-2148-10-210

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

S. Q. Le and O. Gascuel, An Improved General Amino Acid Replacement Matrix, Molecular Biology and Evolution, vol.25, issue.7, pp.1307-1320, 2008.
DOI : 10.1093/molbev/msn067

URL : https://hal.archives-ouvertes.fr/lirmm-00324106

G. Jobb, A. Haeseler, and K. Strimmer, TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics, BMC Evolutionary Biology, vol.4, issue.18, 2004.

N. Lartillot, T. Lepage, and S. Blanquart, PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating, Bioinformatics, vol.25, issue.17, pp.2286-2288, 2009.
DOI : 10.1093/bioinformatics/btp368

J. Yuan, P. O-'donoghue, and A. Ambrogelly, Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems, FEBS Letters, vol.52, issue.2, pp.342-349, 2010.
DOI : 10.1080/10635150390235520

I. L. Hofacker, RNA secondary structure analysis using the Vienna RNA package, Current Protocols in Bioinformatics, vol.12, 2004.

R. Jiang and J. A. Krzycki, PylSn and the Homologous N-terminal Domain of Pyrrolysyl-tRNA Synthetase Bind the tRNA That Is Essential for the Genetic Encoding of Pyrrolysine, Journal of Biological Chemistry, vol.62, issue.39, pp.32738-32746, 2012.
DOI : 10.1271/bbb.110653

E. M. Zdobnov and R. Apweiler, InterProScan - an integration platform for the signature-recognition methods in InterPro, Bioinformatics, vol.17, issue.9, pp.847-848, 2001.
DOI : 10.1093/bioinformatics/17.9.847

M. J. Hohn, H. Park, P. O-'donoghue, M. Schnitzbauer, and D. Söll, Emergence of the universal genetic code imprinted in an RNA record, Proceedings of the National Academy of Sciences, vol.7, issue.4, pp.18095-18100, 2006.
DOI : 10.1186/1471-2105-7-382

G. Fournier, Horizontal Gene Transfer and the Evolution of Methanogenic Pathways, Methods in Molecular Biology, vol.532, pp.163-179, 2009.
DOI : 10.1007/978-1-60327-853-9_9

G. P. Fournier, J. Huang, and J. Peter-gogarten, Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.16, issue.9, pp.2229-2239, 2009.
DOI : 10.1101/gr.5322306

A. V. Lobanov, A. A. Turanov, D. L. Hatfield, and V. N. Gladyshev, Dual functions of codons in the genetic code, Critical Reviews in Biochemistry and Molecular Biology, vol.83, issue.4, pp.257-265, 2005.
DOI : 10.1073/pnas.83.13.4650

S. Gribaldo and C. Brochier-armanet, The origin and evolution of Archaea: a state of the art, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.1, issue.1, pp.1007-1022, 2006.
DOI : 10.1155/2002/729649

URL : https://hal.archives-ouvertes.fr/hal-00697930

J. T. Wong, Coevolution theory of the genetic code at age thirty, BioEssays, vol.25, issue.4, pp.416-425, 2005.
DOI : 10.1042/bj2490305

D. G. Longstaff, S. K. Blight, L. Zhang, K. B. Green-church, and J. A. Krzycki, In vivo contextual requirements for UAG translation as pyrrolysine, Molecular Microbiology, vol.144, issue.1, pp.229-241, 2007.
DOI : 10.1073/pnas.87.12.4660