Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos

Abstract : Mantle control on planetary dynamos is often studied by imposing heterogeneous core-mantle boundary (CMB) heat flux patterns on the outer boundary of numerical dynamo simulations. These patterns typically enter two main categories: Either they are proportional to seismic tomography models of Earth’s lowermost mantle to simulate realistic conditions, or they are represented by single spherical harmonics for fundamental physical understanding. However, in reality the dynamics in the lower mantle is much more complicated and these CMB heat flux models are most likely oversimplified. Here we term alternative any CMB heat flux pattern imposed on numerical dynamos that does not fall into these two categories, and instead attempts to account for additional complexity in the lower mantle. We review papers that attempted to explain various dynamo-related observations by imposing alternative CMB heat flux patterns on their dynamo models. For present-day Earth, the alternative patterns reflect non-thermal contributions to seismic anomalies or sharp features not resolved by global tomography models. Time-dependent mantle convection is invoked for capturing past conditions on Earth’s CMB. For Mars, alternative patterns account for localized heating by a giant impact or a mantle plume. Recovered geodynamo-related observations include persistent morphological features of present-day core convection and the geomagnetic field as well as the variability in the geomagnetic reversal frequency over the past several hundred Myr. On Mars the models aim at explaining the demise of the paleodynamo or the hemispheric crustal magnetic dichotomy. We report the main results of these studies, discuss their geophysical implications, and speculate on some future prospects.
Type de document :
Article dans une revue
Progress in Earth and Planetary Science, Springer/Japan Geoscience Union, 2015, 2 (1), pp.505-518. 〈10.1186/s40645-015-0056-3〉
Liste complète des métadonnées

https://hal-clermont-univ.archives-ouvertes.fr/hal-01635999
Contributeur : Julien Monteux <>
Soumis le : mercredi 17 janvier 2018 - 10:21:49
Dernière modification le : mercredi 11 juillet 2018 - 18:14:02

Lien texte intégral

Identifiants

Citation

Hagay Amit, Gael Choblet, Peter Olson, Julien Monteux, Frédéric Deschamps, et al.. Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos. Progress in Earth and Planetary Science, Springer/Japan Geoscience Union, 2015, 2 (1), pp.505-518. 〈10.1186/s40645-015-0056-3〉. 〈hal-01635999〉

Partager

Métriques

Consultations de la notice

90