Thermo-mechanical adjustment after impacts during planetary growth
Julien Monteux, Nicolas Coltice, Fabien Dubuffet, Yanick Ricard

To cite this version:

HAL Id: hal-01636038
https://hal-clermont-univ.archives-ouvertes.fr/hal-01636038
Submitted on 16 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thermo-mechanical adjustment after impacts during planetary growth

Julien Monteux, Nicolas Coltice, Fabien Dubuffet, and Yanick Ricard

Received 29 August 2007; accepted 7 November 2007; published 18 December 2007.

The thermal evolution of planets during their growth is strongly influenced by impact heating. The temperature increase after a collision is mostly located next to the shock. For Moon to Mars size planets where impact melting is limited, the long term thermo-mechanical readjustment is driven by spreading and cooling of the heated zone. To determine the time and length scales of the adjustment, we developed a numerical model in axisymmetric cylindrical geometry with variable viscosity. We show that if the impactor is larger than a critical size, the spherical heated zone isothermally flattens until its thickness reaches a value for which motionless thermal diffusion becomes more effective. The thickness at the end of advection depends only on the physical properties of the impacted body. The obtained timescales for the adjustment are comparable to the duration of planetary accretion and depend mostly on the physical properties of the impacted body. Citation: Monteux, J., N. Coltice, F. Dubuffet, and Y. Ricard (2007), Thermo-mechanical adjustment after impacts during planetary growth, Geophys. Res. Lett., 34, L24201, doi:10.1029/2007GL031635.

1. Introduction

Impacts have strongly influenced the evolution of planets: a collision of the Earth with a Mars-sized body is at the origin of the formation of the Moon [Hartmann and Davis, 1975] and the impact by a kilometer-sized body could be responsible for the mass extinction at the K-T boundary [Alvarez et al., 1980]. It is during accretion that impacts played the most significant role, depositing and burying heat into growing planetary bodies.

When the impact velocity becomes larger than the elastic velocities, a shock wave develops. The shock pressure, increasing with the size of the impacted body, is nearly uniform in a spherical region next to the impact (the isobaric core), and strongly decays away from it [Croft, 1982]. Following the adiabatic pressure release, the peak pressure being independent of impactor size, the temperature increase of several hundred degrees remains on Moon to Mars size bodies [Senshu et al., 2002] (see equation (2)). Hence, the hotter temperatures are located close to the surface during planetary growth [Kaula, 1979] and large impacts have caused extensive melting and formation of magma oceans on Earth [Tonks and Melosh, 1993].

The thermal anomaly caused by an impact generates a buoyant thermal anomaly that ultimately drives an isostatic adjustment. If the impact velocity is larger than 7.5 km.s\(^{-1}\), a significant volume of the isobaric core is molten [O’Keefe and Ahrens, 1977] hence the adjustment is controlled by two-phase flow and probably hydrofracturation [Solomatov, 2000]. For smaller planets or planetesimals, melting is nearly absent therefore the thermo-mechanical adjustment is dominated by the slow viscous deformation and thermal diffusion of the hot thermal anomaly.

In this study, we investigate the thermal relaxation and viscous deformation after the shock of an impactor on a small planet or planetesimal in order to derive scalings for the relevant length and time scales of the thermo-mechanical adjustment.

2. Model Description

2.1. Thermal State After an Impact

Energy balance calculations and shock simulations suggest that the radius of the isobaric core \(R_{ic} \) is comparable or slightly larger than that of the impactor \(R_{imp} \) and we use \(R_{ic} = 3/5 R_{imp} \) [Senshu et al., 2002; Pierazzo et al., 1997]. Away from the isobaric core, the shock wave propagates and the peak pressure decays with the square of the distance \(r \) from the center of the isobaric core [Pierazzo et al., 1997]. Just after the adiabatic pressure release, the thermal perturbation corresponds to an isothermal sphere of radius \(R_{ic} \) and temperature \(T_0 + \Delta T \) that decays when \(r > R_{ic} \) as

\[
T(r) = T_0 + \Delta T \left(\frac{R_{ic}}{r} \right)^m,
\]

with \(m \approx 4.4 \) as proposed by Senshu et al. [2002].

The energy dissipated as heat following the shock is a fraction of the kinetic energy of the impactor. The impactor velocity \(v_{imp} \) should be comparable to the escape velocity \(v_{esc} = \sqrt{2 g R} \), where \(g = 4/3 G \rho R \) \(\rho \) and \(R \) are the gravity, density and radius of the impacted growing planet [Kokubo and Ida, 1996]. Assuming \(\rho \sim \rho_{imp} \sim \rho_{ic} \), the temperature increase \(\Delta T \) is

\[
\Delta T = \frac{4 \pi \gamma}{9 f(m)} \frac{\rho G R^2}{C_p},
\]

where \(C_p \) is the heat capacity of the impacted body and \(G \) is the gravitational constant. The efficiency of kinetic to thermal energy conversion \(\gamma \) is close to 0.3 according to physical and numerical models [O’Keefe and Ahrens, 1977]. The function \(f(m) \) represents the volume effectively heated normalized by the volume of the isobaric core (i.e., \(f(m) = 1 \) if only the isobaric core is heated). Assuming \(R_{ic} \ll R \) and integrating equation (1) leads to \(f(m) \sim 2.7 \) and 37% of the impact heating is released within the isobaric core. The temperature increase does not depend on the size of the impactor but on the square of the radius of the impacted body.
Immediately after the shock, a fraction of the isobaric core is removed during crater excavation. However, it is only for small impactors (less than 5 km of radius) and large planets (more than 3000 km of radius) that a significant fraction of the heated zone is redistributed \cite{Maxwell, 1977}. Modelling these processes of mass and energy redistribution is beyond the scope of this paper since we are interested in the long term consequences of shock heating as in work by Reese et al. [2002].

The proposed thermal state following an impact sketched in Figure 1 (top) is that of a cold body of homogeneous temperature \(T_0\) perturbed by the impact of a sphere of radius \(R_{ic}\) (the depth of the crater being negligible compared to the heated zone).

2.2. Thermo-Mechanical Model

The governing non-dimensional equations for the extremely viscous flow of a cooling hot drop are

\[
\begin{align*}
-\nabla p^* + \nabla \cdot \left(\frac{\eta(T^*)}{\eta_0} \nabla \psi^* + \left[\frac{\eta(T^*)}{\eta_0} \nabla \psi^* \right]^T \right) + T^* \ddot{\psi}^* &= 0, \\
\frac{\partial T^*}{\partial t^*} &= \nabla^2 T^* - \nabla \cdot \nabla T^*,
\end{align*}
\]

where distances, temperature and velocity are normalized by \(R_{ic}\), \(D_T\) and the characteristic Stokes velocity \(v_s\) of the isobaric core

\[
v_s = \frac{\alpha \rho g \Delta T R_{ic}^2}{\eta_0},
\]

where \(\eta_0\) is the viscosity far from the impact and \(\alpha\) the thermal expansivity of the impacted body. \(Ra_{ic}\) is the Rayleigh number based on the isobaric core radius:

\[
Ra_{ic} = \frac{\alpha \rho g \Delta T R_{ic}^3}{\kappa \eta_0}.
\]

We define a Rayleigh number based on the size of the isobaric core \(R_{ic}\) since in all our experiments, the radius of the planet \(R\) remains much larger than \(R_{ic}\) and thus does not affect the dynamics except through the gravity and the temperature increase (see equation (2)).

For planets of Moon to Mars size the gravity and the temperature increase are not very large (e.g. \(g \simeq 3\) m s\(^{-2}\), \(\Delta T \simeq 300\) K). We also consider impactors with radius small compared to the planet radius (e.g. \(R_{ic} < 300\) km). In this case, \(Ra_{ic}\) should remain moderate (say lower than \(10^5\) assuming that the coldest material of the growing planetesimal have a viscosity \(\eta_0\) comparable to that of the present day Earth, say around \(10^{21}\) Pa s (e.g. \(Ra_{ic} \simeq 4700\) for \(\kappa = 10^{-6}\) m\(^2\) s\(^{-1}\), \(\alpha = 5 \times 10^{-5}\) K\(^{-1}\), \(C_p = 1200\) J K\(^{-1}\) kg\(^{-1}\), \(\rho = 3870\) kg m\(^{-3}\)). The viscosity is temperature-dependent.
$R_{ic} = 10^4$ only, from which we fit scaling laws that can be extrapolated to higher Rayleigh numbers.

[13] The geometrical evolution of the post-impact thermal anomaly as a function of time is monitored by its non-dimensional radial extent $R^*(t^*)$, its thickness $a^*(t^*)$ and its maximum temperature $T_{max}^*(t^*)$. $a^*(t^*)$ is the depth where the second derivative of the vertical temperature profile at $r^* = 0$ is zero. Along this profile the maximum temperature value $T_{max}^*(t^*)$ is reached at $z^* = z_{max}^*$. $R^*(t^*)$ is the distance where the second derivative of the horizontal temperature profile at $z^* = z_{max}^*$ is zero.

3. Results

[14] For large enough Rayleigh numbers, the thermal relaxation consists in an early advective stage corresponding to an isothermal flattening of the hot drop, followed by a later stage of diffusive cooling. For $Ra_{ic} \leq 4.9$, cooling is motionless.

3.1. Advective Stage and Diffusive Stage

[15] Figure 2 shows a first stage in the thermal relaxation corresponding to isothermal spreading of the buoyant hot region below the surface. This phenomenon of viscous gravity currents has been widely studied [Bercovici and Lin, 1996; Koch and Koch, 1995; Huppert, 1982; Koch and Manga, 1996]. The evolution of the shape is comparable to these works even though they were either designed to study mantle plumes fed by a deeper conduit [Bercovici and Lin, 1996] or compositional plumes [Koch and Manga, 1996]. Moreover, the analytical results and scaling laws given by Koch and Koch [1995] have been mostly derived in a regime where $R^* \gg a^*$ which is not really the case in our calculations.

[16] During the advective stage (see Figure 1 (middle)), the aspect ratio of the drop is increasing while the temperature and the volume of the thermal anomaly remain nearly constant, i.e.

$$\frac{a^*}{R^*} \sim 1.$$ \hspace{1cm} (8)

The second stage of thermal relaxation is dominated by diffusion. After the hot drop stops flattening, heat is diffused in all directions and more efficiently through the top isothermal cold surface. As a consequence, R^* and a^* increase with time as seen in Figure 2. The evolution of $a^*(t^*)$ is rapidly consistent with a purely diffusive model:

$$a^*(t^*) \sim \sqrt{2 \kappa R^* t^*}.$$ \hspace{1cm} (9)

The lateral extent, $R^*(t^*)$, evolves more slowly but reaches a similar diffusive behavior after a long time. The temperature decreases rapidly with the power of -1.8 (see Figure 1 (bottom) and Figure 2).

3.2. Time and Length Scales

[17] The transition from the advective to the diffusive stage happens when the diffusion velocity, κ/a overcomes the advection velocity which is of order $\alpha \rho g \Delta T a^2/\eta_0$. This simple balance implies that

$$\frac{a_{min}^*}{R_{ic}^*} = c_1 R_{ic}^{1/3},$$ \hspace{1cm} (10)

where c_1 is a constant. The volume of the hot anomaly being constant, the radius of the thermal anomaly at the end
is easily obtained by combining equations (8) and (9):
\[R^*_{\text{adv}} = c_1^{-1/2} R_{\text{ic}}^{1/6}. \]

The time \(t_{\text{adv}} \) at the end of the advective stage corresponds to the time needed to advect the bottom of the thermal anomal from its initial depth \(2R_{\text{ic}} \) to its final depth \(a_{\text{min}} \). As the vertical velocity \(\partial a/\partial t \) is of order of \(-\alpha \rho g \Delta T a^2/\eta_0 \), we get
\[\frac{\partial a}{\partial t} = -c_2 \frac{\alpha \rho g \Delta T a^2}{\eta_0}, \]
where \(c_2 \) is a geometrical factor.

Integration of equation (11) from \(a(0) = 2R_{\text{ic}} \) to \(a(t_{\text{adv}}) = a_{\text{min}} \) using equation (9) implies that the end of the advection phase occurs at
\[t^*_{\text{adv}} = \frac{1}{c_2} \left(\frac{1}{2c_1} R_{\text{ic}}^{1/3} - \frac{1}{2} \right), \]

These scalings of equations (9), (10), and (12) are confirmed by fitting the results of the numerical experiments shown in Figure 3 with \(c_1 \sim 1.7 \) and \(c_2 \sim 0.2 \).

Of course, the transition between advective and diffusive stages only occurs when the initial size of the isobaric core is larger than the minimum thickness given by equation (9). This threshold \(R_{\text{ic}}^* \) obtained when \(a_{\text{min}}^* = 2 \) corresponds to the threshold Rayleigh number
\[R_{\text{ic}}^* = c_1^3 = 4.9. \]

For \(R_{\text{ic}} < R_{\text{ic}}^* \), \(a_{\text{min}}^* = 2R_{\text{ic}} \) and \(t^*_{\text{adv}} \) is not defined. Below \(R_{\text{ic}}^* \) the heat is diffused out without advection.

The previous scalings obtained for a uniform viscosity are also valid for large viscosity contrasts. Our simulations depicted in Figure 3 (squares for \(\lambda = 10^{-1} \) and triangles for \(\lambda = 10^{-2} \)) show that large viscosity contrasts enable the drop an easier spreading below the surface in agreement with Koch and Koch [1995]. As the resistance to internal shearing decreases with \(\lambda \), horizontal velocity contrasts are more important for low viscosities. As a result, the thickness decreases by about 10%, the radial extent increases by a similar amount and the advection time decreases by a factor \(\sim 2 \). The temperature dependence of the viscosity affects our results by a minor amount because the readjustment is mostly controlled by the viscosity far from the isobaric core.

The scaling laws with physical dimensions can be easily expressed. Using equation (2) and assuming that the planet density remains uniform so that \(g = 4/3 \pi G \rho R \), the minimal thickness of the thermal anomaly and the time to reach this thickness are
\[a_{\text{min}} = 2b_1 \frac{L^2}{R}, \]
and
\[t_{\text{adv}} = b_2 \frac{L^2}{R} \left(\frac{L}{R} \right)^2 \left(1 - b_1 \frac{L^2}{R R_{\text{ic}}} \right). \]

In these expressions, \(b_1 \) and \(b_2 \) are dimensionless constants,
\[b_1 = \frac{3}{2} \frac{1}{c_1} \left(\frac{f(m)}{27 \pi} \right)^{1/3} \sim 1.96, \quad b_2 = \frac{b_1^2}{2c_1^2 c_2} \sim 1.96, \]
and the properties of the impacted planet appear through a characteristic length
\[L = \left(\frac{C_p k \eta_0}{\alpha \rho G^2} \right)^{1/6} \sim 212 \text{ km.} \]

4. Discussion and Conclusion

We developed a thermo-mechanical model for the long term relaxation after an impact. In a first stage, the heated region spreads below the surface until diffusive cooling becomes more effective. The transition between the advective and diffusive stages is described by a thickness \(a_{\text{min}} \) and timescale \(t_{\text{adv}} \) for which we proposed scalings
laws. Hence we can predict geometrical and time evolution of the thermal anomaly caused by a meteoritical impact as functions of rheological parameters of the impacted planetesimal and impactor. All our results are summarized in Figure 4.

[25] The temperature increase (Figure 4, top) and the thickness of the thermal anomaly after advection (Figure 4, middle) do not depend on the initial size of the impactor but only on the properties of the impacted body (and therefore its radius assuming known its other properties, see equations (2) and (14)). As the volume of the isobaric core is proportional to that of the impactor the minimum thickness of the thermal anomaly corresponds also to the minimum radius of the impactor that can trigger advection (Figure 4, middle). For a Mars size planet ($R = 3400$ km), impacts increase the temperature by 390 K (in relative terms). The duration of advection depends on the impactor size (Figure 4, bottom). As shown in equation (15), the time of advection is lower than a threshold value obtained for an infinitely large impactor (which of course would disrupt the planet). For a Mars size planet impacted by bodies with 1/10 to 1/100 smaller radii, advection ends up after, 10 Myr, 5 Myr, respectively. After this advective stage, heat is slowly removed by diffusion in ~ 20 Myr.

[27] These timescales are of the same order as those for accretion and differentiation [Yin et al., 2002]. Hence, until impact melting is efficient, heat brought by impacts is stored within the mantle even taking into account of the deformation of the heated region. The scalings proposed here could be used to compute more accurate one dimensional thermal evolution models of growing planets.

[28] Acknowledgments. The authors thank J. Schmalzl, H. Samuel and an anonymous reviewer for their useful comments about the manuscript. They also thank J. Melosh and M. Monnereau for helpful discussions. This project was funded by the A.N.R. ETHER.

References