Soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not improve muscle functional property restoration

To cite this version:

SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMobilIZATION-INDUCED MUSCLE ATROPHY IN OLD RATS BUT DO NOT IMPROVE MUSCLE FUNCTIONAL PROPERTY RESTORATION

J. VERNEY1, V. MARTIN1, S. RATEL1, V. CHAVANELLE1, M. BARGETTO1, M. ETIENNE1, E. CHAPLAIS1, P. LE RUYET2, C. BONHOMME2, L. COMBARET3, C. GUILLET3,4, N. BOISSEAU1, P. SIRVENT1, D. DARDEVET3

Abstract: Objectives: Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Design: Longitudinal animal study. Setting: Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Intervention: Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Measurements: Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. Results: In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 dairy proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Conclusion: Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.

Key words: Aging, immobilization, muscle mass recovery, muscle function, whey proteins.

Introduction

Sarcopenia is a highly predictive factor of frailty, of limited mobility, of increased susceptibility to injury and of impaired recovery (1). Besides a chronic and progressive muscle loss, sarcopenia could be also explained by an impaired recovery of muscle mass after a catabolic state including immobilization-induced muscle atrophy (2-6). We and others have shown that muscle protein synthesis was impaired during the recovery period (4,7) which may explain the absence of a positive nitrogen balance and subsequently the lack of muscle mass recovery observed during aging (5-6). These episodes of uncomplete recoveries repeated over time may contribute to a significant muscle mass and strength losses and then worsen the sarcopenic state. This phenomenon named the “acute catabolic crisis” model (8) contributes to accelerate the frailty syndrome appearance and increases the risk of early institutionalisation and death (9-10). The “acute catabolic crisis” model has also been observed after other generalized catabolic states including food deprivation or glucocorticoid treatment (11-13).

Muscle protein synthesis is not constant during the day and is subjected to variations especially following food intake. Dietary amino acids are particularly efficient in stimulating muscle protein synthesis and in inhibiting muscle protein breakdown (14-16), hence resulting in a positive post-prandial nitrogen balance required to maintain the muscle mass constant. Among amino acids, leucine is particularly known for its ‘signal’ properties i.e. to acutely increase muscle protein synthesis and decrease protein breakdown under both in vitro and in vivo conditions (17-26). Leucine ingestion results in the phosphorylation of proteins that are critical for the anabolic mTOR signalling pathway, thereby leading to the stimulation of the initiation of muscle protein synthesis (27-29). We have shown (5) that muscle protein synthesis becomes resistant to the anabolic effect of food intake during the immobilization and recovery period even if the protein intake is considered sufficient to cover the amino acids requirements in a control non-pathological situation. This anabolic resistance has been associated to an elevation of the muscle anabolic threshold which controls the intensity and the duration of post-prandial muscle protein synthesis (30). However, in a recent study in aged rats (5), we showed that leucine rich soluble milk proteins were more efficient than a standard diet to stimulate post-prandial muscle protein synthesis in a limb that was previously immobilized and were then efficient to improve muscle mass recovery. So far, the great majority of nutritional interventions aimed at targeting muscle mass recovery after a period of immobilization. However, these nutritional interventions should also target muscle functional properties, since muscle mass and force/power production capacities are not always linearly related (31-33). Interestingly, in adults, leucine rich soluble milk proteins also promoted a faster recovery of
SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMOBILIZATION-INDUCED MUSCLE

isometric force and concentric power output (34). Whether soluble milk proteins may improve simultaneously muscle mass and functional properties recovery after unloading in elderly remains unknown. Indeed, this remained questionable as a recent systematic review and meta-analysis concluded that leucine rich protein supplementation was found to exert beneficial effects on lean body mass in sarcopenic older persons but not on muscle strength (35). In addition, the quality of the leucine rich milk proteins could also be of importance. Soluble milk proteins (directly extracted from milk using membrane technologies at low temperature (microfiltration and ultrafiltration)) seemed more efficient than whey proteins (extracted after casein coagulation) in increasing muscle concentric power during the recovery period in adults (36). The reason of these differences between the sources of proteins (directly extracted from milk by ultrafiltration or from whey) remains obscure but a differential impact on the oxidative status of the skeletal muscle could be hypothesized since Gryson et al. (37) showed that muscle resistance to fatigue with soluble milk proteins was improved in elderly.

The aim of the present study was to compare the beneficial effect of three milk proteins i.e. casein, soluble milk proteins and whey proteins on the recovery of skeletal muscle mass, force, power and fatigability after cast immobilization during aging.

Materials and Methods

Animals and experimental design – ethics statement

The present study was approved by the Animal Care and Use Committee of Auvergne (CEMEA Auvergne; Permit Number: CE108-12) and the Ministère de l’Enseignement Supérieur et de la Recherche (n° 01075.02). Old adult male Wistar rats (20-21 months) were housed individually under controlled environmental conditions (room temperature 22°C; 12 h light-dark cycle, light period starting at 08:00 h), fed ad libitum a standard 13% casein diet (Table 1) and given free access to water. After a 3-week adaptation period (I0), the rats were subjected to unilateral hindlimb cast immobilization with an Orfit-soft plaque (Gibaud, France) for 8 days (I8). The foot was positioned in plantar flexion to induce a maximal atrophy of the gastrocnemius muscle (4). As casted rats reduced their food intake during the immobilization period, control non-casted rats were pair-fed (PF) to the casted groups at each time point studied and were fed the standard 13% casein diet. To allow muscle recovery, casts were removed and animals were studied at cast removal (I8) and then 7 (R7), 21 (R21), 35 (R35) and 49 (R49) days after cast removal (Figure 1A and B). The foot was positioned in plantar flexion to induce a maximal atrophy of the gastrocnemius muscle (4). As casted rats reduced their food intake during the immobilization period, control non-casted rats were pair-fed (PF) to the casted groups at each time point studied and were fed the standard 13% casein diet. To allow muscle recovery, casts were removed and animals were studied at cast removal (I8) and then 7 (R7), 21 (R21), 35 (R35) and 49 (R49) days after cast removal (Figure 1A and B). During the recovery period, the animals were fed either the standard 13% casein diet (CAS), the 13% soluble milk proteins diet (PRO) or the 13% whey proteins diet (LAC) (Table 1, Figure 1). The protein sources differed from their digestion speed characteristics and leucine content (CAS (slow digested, poor in leucine) vs. PRO and LAC (fast digested and rich in leucine)) and also from different milk process (PRO (filtration) vs. CAS and LAC (precipitation)).

Table 1

Composition of the experimental diets in g per kg dry matter. Cysteine and proline were added to the CAS and PRO, LAC diets, respectively, in order to match amino-acid composition between all experimental diets.

<table>
<thead>
<tr>
<th>g/kg diet</th>
<th>CAS</th>
<th>PRO</th>
<th>LAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caseinate Ca2+</td>
<td>156</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soluble Milk Proteins</td>
<td>0</td>
<td>144</td>
<td>0</td>
</tr>
<tr>
<td>Whey Proteins</td>
<td>0</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Cystine</td>
<td>1.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Proline</td>
<td>0</td>
<td>5.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Rapessed oil</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Peanut oil</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Cellulose</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Mineral mix AIN93</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Vitamin mix AIN93</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Saccharose</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Lactose</td>
<td>31</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Wheat Starch</td>
<td>573</td>
<td>586</td>
<td>564</td>
</tr>
<tr>
<td>Total Carbohydrates</td>
<td>70.4%</td>
<td>71.6%</td>
<td>69.5%</td>
</tr>
<tr>
<td>Total Proteins</td>
<td>13.0%</td>
<td>13.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Total Lipids</td>
<td>6.0%</td>
<td>6.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Total Energie (kcal/kg)</td>
<td>3987</td>
<td>4002</td>
<td>3998</td>
</tr>
<tr>
<td>Total Essential aminoacids (g/kg diet)</td>
<td>11.3</td>
<td>16.4</td>
<td>14.7</td>
</tr>
<tr>
<td>Leucine</td>
<td>7.8</td>
<td>6.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Valine</td>
<td>6.1</td>
<td>6.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>4.3</td>
<td>2.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Methionine</td>
<td>9.6</td>
<td>11.1</td>
<td>11.9</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.6</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>3.5</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Histidine</td>
<td>5.6</td>
<td>6.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Threonine</td>
<td>6.1</td>
<td>4.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

The evaluation of the in vivo functional properties of the plantar flexors (see below) was performed longitudinally on the same animals before and after casting in each group (Figure 1A). For the evaluation of muscle mass, muscle fibre size and muscle enzymatic properties, rats of each group were sacrificed at the different times during the immobilization period (I0 and I8) and during the recovery period (R7, R21, R35 and R49) (Figure 1B).
Muscle masses, fibre size and biochemistry analyses

Body mass was monitored daily all along the experimental protocol. Hindlimb muscles (soleus, gastrocnemius, extensor digitorum longus, tibialis anterior) were weighted before immobilization, after 8 days of immobilization (I8) and then 7, 21, 35 and 49 days of recovery after anaesthesia and sacrifice of the animals by aortic blood exsanguination.

Immediately after sacrifice, a part of gastrocnemius muscle was cut, included in an embedding medium (Cryomount; Histolab, Göteborg, Sweden) and mounted on a cork piece. The sample was then frozen in isopentane cooled to its freezing point in liquid nitrogen and stored at -80°C until further cryostat sectioning. Gastrocnemius muscle was chosen because it is the largest plantar flexor muscle. A ten µm-thick cross section was cut at -20°C using a cryostat (Leica, Cryocut 1800), mounted on glass slides, air-dried at room temperature during 45 minutes and stored a few days at -20°C until Hematoxylin-Eosin (H&E) staining. Briefly, frozen slides were air-dried at room temperature for 30 minutes, fixed in acetone during 15 minutes, rinsed in distilled water during 5 minutes and subsequently stained in Mayer’s Haematoxylin (Sigma MHS32) during 4 minutes. Slides were then rinsed 5 minutes under running tepid water and after being dried they were dipped into an alcoholic eosin Y solution (Sigma HT110132) during 1 minute. After a wash in distilled water, slides were progressively dehydrated in different baths of ethanol (3 min each) at 70%, 90% and 100% and permanently mounted with Eukitt (CML, France) and Xylene.

Images were captured with a digital camera (Leica DFC450C) connected to a microscope (Leica DM2000). Muscle fiber area was measured using Image J. software (NIH, USA) on a mean of 600 fibers randomly chosen on the whole muscle sample to provide a good estimation of mean muscle fibre area. During all muscle analysis, the technicians in charge of muscle analysis worked in a blind manner.

Figure 1
Schematic diagram of the study design. A: for the evaluation of muscle functionality and B: for the evaluation of muscle mass, muscle fibre size and muscle enzymatic properties.

Evaluation of the muscle functional properties

The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer specially designed for rats (806D, Aurora Scientific, Canada). The testing protocol was similar to that used by Martin et al. (34).

Rats were maintained anesthetized with continuous isoflurane inhalation. During the testing procedures, the rat laid supine on a heating plate with the right foot attached to a footplate connected to a dual mode servomotor (305C-LR, Aurora Scientific, Canada). The knee was clamped in place such that the knee angle was 90°, and the ankle axis of rotation coincided with axis of the motor. To avoid any variation in body temperature, the rectal temperature was monitored and computed by a temperature controller (ATC 1000, World Precision Instruments, USA) that adjusted the temperature of the heating plate to maintain the rectal temperature at 37°C. Stimulation of the rat ankle plantarflexors was done percutaneously via Ag/AgCl surface electrodes (StimCom TS0020, Comepa, France). A constant-current electrical stimulator (DS 7A, Digitimer, United Kingdom) was used to deliver square waves (pulse width = 1 ms). The stimulator was triggered and controlled with automated scripts by an A/D board (Powerlab 8/35, ADInstruments, Australia) and associated software (LabChart 7.3, ADInstruments, Australia).

The protocol consisted in the evaluation of the torque-frequency relationship in isometric condition, the torque-velocity relationship in concentric condition and the assessment of muscle fatigability in isometric condition (34).

To determine the torque-frequency curve, the ankle angle was set at 90° and the plantarflexors stimulated at frequencies varying from 10 to 200 Hz (10, 20, 30, 40, 50, 60, 70, 80, 100, 125, 150, 175, and 200 Hz). These contractions were 200 ms in length with 45 s between contractions, and done in order of increasing stimulation frequency. The reported isometric torque values were calculated as the peak isometric torque.

Citrate synthase (CS) and beta-hydroxyacyl CoA dehydrogenase (β-HAD) activities

Frozen gastrocnemius and soleus samples were homogenized in ice-cold extracting buffer (175 mM KCl, 2 mM EDTA, 0.1% Triton, pH 7.4). CS activity was assessed according to the method of Srere et al. (38). The assay was initiated by the reaction of acetyl-CoA with oxaloacetate. The reduced CoA (CoA-SH) released reacts with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and forms the coloured compound 2-nitro-5-benzoic acid (TNB). The increase of TNB absorbance was followed for 3 minutes at 412 nm. The activity was expressed as µmols of substrate transformed per minute per g of wet weight.

β-HAD activity was assessed according to the method described by Essen et al. (39). Acetoacetyl-CoA was used as substrate and the disappearance of NADH was followed for 3 minutes at 355 nm. The activity was expressed as µmols of substrate transformed per minute per g of wet weight.
SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMOBILIZATION-INDUCED MUSCLE

minus resting torque. The maximal torque was determined from the torque-frequency relationship. The specific torque was calculated as the maximal torque divided by muscle mass (see below).

After 3 minutes of rest, the torque-velocity curve was determined from 11 concentric contractions realized at angular velocities of 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000°/s, realized in order of decreasing velocity. These contractions were evoked over a 40°-angular amplitude, centered about the 90° ankle angle (i.e., from 70° to 110°). This movement range was chosen because it coincides closely to that of the ankle during the stance phase of voluntary ambulation (i.e., from 72° to 111°; [40]). The contractions were evoked every 45s by stimulation trains delivered at 175 Hz for only the duration necessary to complete the movement (i.e., 40 ms at 1,000°/s to 800 ms at 50°/s); the 175-Hz frequency was used according to Warren et al. (31) recommendation, as the frequency yielding maximal isometric tetanic torque. A power-velocity curve was then computed from this torque-velocity curve to determine the maximal power.

Finally, muscle fatigability was assessed with an isometric protocol adapted from the standard Burke fatigue protocol (41). It consisted in a repetition of 300-ms stimulation trains at a frequency of 40 Hz, repeated every second for 75s. Maximum and minimum isometric torque values were computed to calculate a fatigability index, as follows:

Fatigability index (%) = ((minimum torque – maximal torque)/maximal torque) x 100

Data were recorded with an A/D Board (Powerlab 8/35, ADInstruments, Australia), sampled at a frequency of 2000 Hz and analyzed with the Labchart software (LabChart 7.3, ADInstruments, Australia). This software and the Powerlab system were also used to trigger and control the movement of the isokinetic ergometer with automated scripts during concentric contractions.

Statistics
Data are expressed in the text as mean ± SD, excepted in the figures where SEM has been preferred for the sake of clarity for the corresponding figures.

Data were screened for normality of distribution and homogeneity of variances using a Shapiro-Wilk normality test and the Bartlett test, respectively. Functional tests data were obtained longitudinally from the same rats. As a consequence, isometric torque, concentric power and fatigability data were analyzed with a two-way ANOVA with repeated measures (time x diet). When the ANOVA revealed significant effects or interaction between factors, a Fischer least significant difference post hoc test was applied to test the discrimination between means.

The muscle mass and enzymatic activities data were obtained from independent groups of rats. As a consequence, these data were analysed with a two-way ANOVA (time x diet). When the ANOVA revealed significant effects or interaction between factors, a Fischer least significant difference post hoc test was applied to test the discrimination between means.

The limit for statistical difference was set at p< 0.05. Statistical procedures were performed using the Statistica 8.0 software (Statsoft, Inc.).

Results

Food intake and animal body weight
Food intake was similar in all groups before casting and decreased during immobilization to reach 10.2 ± 0.1, 10.3 ± 0.1 and 10.4 ± 0.1 g/d at I8 in the CAS, PRO and LAC groups, respectively (Figure 2). Then, animals increased their food intake during the recovery period. Food intake of the PF group perfectly matched the one of the casted group during immobilization, such that food intake did not differ significantly between the 4 groups during the whole experimental period.

Muscle masses
Eight days of cast immobilization induced a significant decrease in plantar flexor muscle masses (soleus + gastrocnemius) after 8 days of unloading (-24.9%, p<0.0003 vs. I0) (Figure 3A). Muscle mass also decreased progressively (-12.8% at R49; p<0.05 vs. I0) in the PF group and it was probably associated with the aging process and sarcopenia development for such animals in this age range (Figure 3A). When fed the casein diet, muscle mass in the casted group remained lower when compared to the PF group (p<0.0001) after 7, 21 and 35 days of rehabilitation (Figure 3A and B) and muscle mass gain during rehabilitation (I8 to R49) remained
no significant (p<0.069) (Figure 3B). In contrast, when fed the soluble milk proteins (PRO) or whey proteins (LAC), a muscle mass recovery occurred and it was significantly different from the casein fed group (Figure 3B). When PRO and LAC proteins were compared, no significant difference was found in term of muscle mass recovery between the two proteins (Figure 3B).

Figure 3
A: Muscle mass of plantar flexor muscle masses (soleus + gastrocnemius) during the immobilization period and during the recovery period in rats fed the casein diet (CAS) and their pair fed controls (PF). B: muscle mass gain after immobilization in rats fed the casein (CAS), (PRO) or the (LAC).

Data are means ± SD

Muscle Fibre area
Eight days of cast immobilization induced a significant 19% decrease in muscle fiber area (p<0.05, Figure 4A vs. 4B). Similarly to what was observed with muscle masses, during recovery, PRO and LAC diet induced a larger gain in muscle fiber area compared to CAS diet (p<0.03), but we did not observe any significant differences between PRO and LAC (Figure 4C D E F).

Citrate synthase (CS) and beta-hydroxyacyl CoA dehydrogenase (β-HAD) activities

Immobilization effect
Overall, at I8 the activities of both CS (Figure 5, panel A and B) and β-HAD (Figure 6, panel A and B) decreased in the gastrocnemius and soleus muscles, compared to I0 and I8 Pair-fed. Pair-feeding per se only decreased CS activity in the gastrocnemius (Figure 5A, p<0.001).

Recovery period
During the recovery period, CS activity increased in both gastrocnemius (Figure 5C) and soleus (Figure 5D) muscles whatever the nutritional state of the rats (time effect, p<0.001). In gastrocnemius (Figure 5C), ANOVA showed a significant group effect (p<0.001) and a significant interaction (group x time effect, p<0.001) indicating a greater recovery in CS activity in PRO and LAC groups compared to CAS group. Post-hoc analysis indicated that rats fed with LAC exhibited a quicker CS activity restoration after 7 days (R7) compared to PRO (p<0.01) or CAS (p<0.001) groups. After 21 days of recovery, CS activity was higher in PRO compared to CAS group (p<0.01). After 35 and 49 days of recovery (R35 and R49), CS activity was only higher in PRO group compared to LAC (p<0.001) or CAS (p<0.001).

Figure 4
Micrograph pictures showing typical changes observed on histological sections stained with Hematoxylin and Eosin (H&E) in rat gastrocnemius muscle before (panel A) and after 8 days of immobilization (panel B). Panels C and D show muscle recovery after 21 and 49 days with CAS diet while panels E and F show muscle recovery after 21 and 49 days with PRO diet.

Figure 5
Gastrocnemius and soleus citrate synthase (CS) activity before (I0) and after the immobilization period in the pair fed (I8 pair-fed) and the casein (I8 casein) groups (panels A and B) and during the recovery period (R7 to R49) in rats fed with casein (CAS, open circles), soluble milk proteins (PRO, Black-filled circles) and whey proteins (LAC, grey-filled circles) (panels C and D). # CAS significantly different from PRO; § CAS significantly different from LAC; * PRO significantly different from LAC.

In the soleus muscle (Figure 5D), a group effect was also observed (p<0.05). Rats fed with PRO differed significantly from those fed with CAS (p<0.01) and LAC (p<0.05). Rats fed with LAC did not differ from those fed with CAS. Time x group interaction was also significant (p<0.05) and post-hoc analysis indicated a higher CS activity in rats fed with PRO at
SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMOBILIZATION-INDUCED MUSCLE

R7 and R21 compared to both CAS and LAC.

Considering β-HAD activity, ANOVA indicated a significant group effect (p<0.001) and a significant time x group effect (p<0.001) in the gastrocnemius (Figure 6C). Rats fed with PRO or LAC showed a higher β-HAD activity compared to the CAS group (p<0.01 for PRO vs. CAS and p<0.05 for LAC vs. CAS). After 7 and 21 days of recovery, rats fed with PRO already presented a higher β-HAD activity compared to CAS and LAC. In contrast, the PRO and LAC groups showed a higher β-HAD activity compared to CAS group after 35 and 49 days of recovery. In the soleus (Figure 6D), rats fed with both PRO and LAC showed a higher β-HAD activity compared to rats fed with Casein (p<0.01). Group x time interaction effect was also noted (p<0.01). PRO group showed higher β-HAD activity compared to CAS group at all recovery time. LAC group showed higher β-HAD activity compared to CAS group at R7, R21 and R49.

Figure 6

Gastrocnemius and soleus beta-hydroxyacyl CoA dehydrogenase (β-HAD) activity before (I0) and after the immobilization period in the pair fed (I8 pair-fed) and the casein (I8 casein) groups (panels A and B) and during the recovery period (R7 to R49) in rats fed with casein (CAS, open circles), soluble milk proteins (PRO, Black-filled circles) and whey proteins (LAC, grey-filled circles) (panels C and D). # CAS significantly different from PRO; § CAS significantly different from LAC; * PRO significantly different from LAC.

Functional properties

The maximal isometric torque was reduced at I8 in the immobilized groups as compared to PF (p<0.05; Figure 7A). PF maximal isometric then tended to decline over time and this decline became significant at R35 and R49. The immobilized groups partly recovered between R7 and R21, such that the isometric torque was not different from PF in the immobilized groups between R7 and R49. No significant difference was observed between the CAS, LAC and PRO groups.

Finally, the fatigability index also varied over time but did not differ between groups. The fatigability index decreased at I8 (p<0.001; Figure 6C) and then gradually increased until R49. On average, at R35 and R49, the fatigability index had improved as compared to I0 (p<0.001).

Figure 7

A) Maximal torque produced by the plantarflexor muscles before (I0), immediately after (I8) and 7 (R7), 21 (R21), 35 (R35) and 49 days (R49) after an eight-day immobilization period. Torque was measured in experimental groups fed a casein (open circles), LAC (grey-filled circles) or PRO diet (Black-filled circles). Torque was also measured in a pair-fed group (grey-filled square). Significantly different from I0: ***: P < 0.001. Significantly different from PF: §: P < 0.05.

B) Maximal concentric power produced by the plantarflexor muscles before (I0), immediately after (I8) and 7 (R7), 21 (R21), 35 (R35) and 49 days (R49) after an eight-day immobilization period. Power was measured in experimental groups fed a casein (open circles), LAC (grey-filled circles) or PRO diet (Black-filled circles). Power was also measured in a pair-fed group (grey-filled square). Significantly different from I0: ***: P < 0.001. Significantly different from I8: ££: P < 0.01. Significantly different from R21: $: P < 0.05.

C) Fatigability index of the plantarflexor muscles before (I0), immediately after (I8) and 7 (R7), 21 (R21), 35 (R35) and 49 days (R49) after an eight-day immobilization period. Fatigability was measured in experimental groups fed a casein (open circles), LAC (grey-filled circles) or PRO diet (Black-filled circles). Fatigability was also measured in a pair-fed group (grey-filled square). Significantly different from I0: ***: P < 0.001.

The maximal specific torque varied as function of time but not differ between groups. It declined at I8 (~ 10.9%, P < 0.01 vs. I0), recovered at R7 and R21, and then declined at R35 (~7.6%, p< 0.05 vs. I0) and R49 (~12.1%, p < 0.001 vs. I0).

The maximal concentric power varied over time but did not differ between groups. Maximal power was reduced from I8 to R49 (p< 0.001 vs. I0; Figure 7B). A partial recovery was observed at R7 and R21, and then power declined from R35 to R49. At R49, the maximal power had significantly decreased as
compared to R21 (p<0.05).

Discussion

The aim of the present study was to compare the beneficial effect of three milk proteins i.e. casein, soluble milk proteins and whey proteins on the recovery of skeletal muscle mass, force, power and fatigability after cast immobilisation during aging. In this study, we observed that in contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. However, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins improved the oxidative capacity in skeletal muscle during the rehabilitation period.

Muscle Mass during immobilization and subsequent recovery

As we previously showed (4-5), cast immobilization was associated with muscle atrophy which was not significantly reversed after the cast removal when casein was used as the dietary protein source. In contrast, with the same amount of soluble milk proteins (soluble milk proteins or whey proteins), a significant increase of muscle mass was observed over the 49 days of recovery. A recovery of about 40% of the muscle mass loss was reached with no difference in the effect of the two soluble milk protein sources studied. The positive effect of soluble milk proteins compared to casein was attributed not only to their higher digestion speed rate but mainly to their higher leucine content (42-45). Indeed, leucine has been shown to trigger an anabolic signal toward muscle protein synthesis (17,46) which allows a better stimulation of muscle protein synthesis after food intake, especially in anabolic resistance situations (30) including skeletal muscle immobilization (47,5). A better post prandial muscle protein synthesis could be then hypothesized that the discrepancy between muscle mass and contractile properties is accentuated with age. In the present study, it was also the case during the recovery period as the significant recovery of muscle mass with the two soluble milk proteins tested was not associated with a paralleled modification of muscle strength or power. Such a decoupling has been previously reported in the literature. Papadakis et al. (32) observed, after a GH treatment in elderly men, an increase in muscle mass but not in knee or handgrip strength. Likewise, the meta-analysis of Komar et al. (35) concluded that leucine rich protein supplementation was found to exert beneficial effects on lean body mass but not on muscle strength in the elderly. An explanation of this phenomenon could be that immobilization is known to induce a remodeling of collagen network that would alter extracellular matrix mechanical properties and induce a decrease in force transmission (48). Another possibility could be an inability to recover an appropriate myofibrillar density. Indeed, it has been shown that both aging and unloading generate a decrease in myosin concentration, i.e. a disproportionate loss of myosin content with respect to CSA of muscle fibres (49).

Muscle mitochondrial enzyme activities

Recently, Gryson et al. (37) showed that soluble milk proteins rich in leucine delayed time to muscle failure i.e. muscle fatigability in healthy older volunteers following a prolonged exercise program. It has been known for a long time that fatigue resistance is highly correlated with mitochondrial enzyme activity (50-51). As expected, we observed decreased enzyme activities following 8 days of immobilization (52-53). During the recovery period, a time-effect showed an improved activity of β-HAD and CS in both soleus and gastrocnemius. Oishi et al. demonstrated similar results in growing rats (54). These authors indeed showed an increase of COX-IV protein content (another marker of mitochondrial density) during the recovery period following two weeks of hindlimb unloading. Interestingly, our result showed that compared to CAS, PRO and LAC induced a better enzyme activity recovery except for soleus CS activity which was only improved in PRO compared to CAS group. These results showed that soluble milk proteins may have some beneficial effects on oxidative capacity recovery following immobilization. We might hypothesize that the greater amount of leucine in soluble milk proteins may account for the beneficial effects of PRO and LAC compared to CAS as leucine has been shown to stimulate mitochondrial biogenesis on C2C12 myocytes (55) and increases SIRT1 expression leading to an improvement of mitochondrial function in mice (56-57). In some cases, PRO presented better recovery effects than LAC. Compared to baseline, the recovery of β-HAD activity in gastrocnemius muscle and CS activity in
SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMOBILIZATION-INDUCED MUSCLE

soleus muscle was indeed faster with PRO, while CS activity in gastrocnemius muscle reached higher levels only at the end of the recovery period in the PRO group. More studies appear necessary in this context to understand why soluble milk proteins (PRO) may improve enzymatic activities to a better extent than whey proteins (LAC).

Despite these observations on enzyme activities, no differences in fatigue resistance were noted between the three diets during the recovery period. Two hypotheses can be proposed to explain this apparent discrepancy. First of all, even if β-HAD and CS activities are considered as good makers of global oxidative capacity, one could hypothesize that functional properties of mitochondria, not measured in the present study, did not change in the same extent than β-HAD and CS activities (58). A second hypothesis would be that mitochondrial oxidative capacity is not the limiting factor of skeletal muscle fatigability and that other important mechanisms might occur. Fatigue mechanisms are indeed very complex and may include different causative factors depending on the type of fatiguing task (59). The relative short measurement period used to assess fatigability index in the present study (75s), may direct assumptions towards other physiological mechanisms than mitochondrial oxidative capacity to explain fatigability results, such as excitation-contraction coupling for example. One could then hypothesize that a longer fatigue protocol requiring a significant contribution of the oxidative metabolism, might highlight a significant difference between the several diets used in the present study.

In conclusion, the present study showed that while soluble milk proteins were more efficient in promoting muscle mass recovery after muscle immobilization during aging, they remained inefficient for the restoration of muscle functionality such as strength, power or fatigability. However, because soluble milk proteins and especially the ones extracted directly from milk showed a better recovery of the muscle oxidative capacities, it might be suggested that exercise training should be performed concomitantly with the nutritional strategy to optimize the effect of soluble milk proteins on both muscle mass and function recovery in elders.

Acknowledgments: The authors are grateful to A. Cisseoire, P. Lhoste, M. Jarzaguet and G. Greateau for their technical assistance during the experiments. Proteins were kindly provided by Lactalis, Retiers, France.

Conflict of Interest: ??????

References

27. Peyrollier K, Halden AC, Blair AS, Hyde RA, Hundal HS. Leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of

34. Martin V, S Ratel, J Siracusa, P. Leruyet, I Savary-Auzeloux, I, Combaret, C Guillet and D Dardevet. Leucine-rich proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy. PloSOne, 2013a, Sep 19;8(9):e75408

40. Varejao AS, Cabrita AM, Meek MF, Bulas-Cruz J, Gabriel RC, et al. Motion of the foot and ankle during the stance phase in rats. Muscle Nerve 2002;26: 630-635

53. Wall BT1, Dirks ML, Snijders T, Stephens FB, Senden JM, Verscheijden ML, van Loon LJ. Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Exp Gerontol. 2015 Jan;61:76-83, 2014

55. Sun X, Zengel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal

SOLUBLE MILK PROTEINS IMPROVE MUSCLE MASS RECOVERY AFTER IMMOBILIZATION-INDUCED MUSCLE