T. Harris, Muscle mass and strength:relation to function in population studies, J Nutr, vol.127, pp.1004-1006, 1997.

M. Chakravarthy, B. Davis, and F. Booth, IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle, Scandinavian Journal of Medicine & Science in Sports, vol.11, issue.1, pp.1365-1379, 2000.
DOI : 10.1111/j.1600-0838.2001.110111-3.x

C. Suetta, L. Hvid, L. Justesen, U. Christensen, K. Neergaard et al., Effects of aging on human skeletal muscle after immobilization and retraining, Journal of Applied Physiology, vol.107, issue.4, pp.1172-1180, 2009.
DOI : 10.1152/japplphysiol.00290.2009

H. Magne, I. Savary-auzeloux, E. Vazeille, A. Claustre, D. Attaix et al., Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways, The Journal of Physiology, vol.928, issue.3, pp.511-524, 2011.
DOI : 10.1111/j.1749-6632.2001.tb05651.x

H. Magne, I. Savary-auzeloux, C. Migne, M. Peyron, L. Combaret et al., Contrarily to whey and high protein diets, dietary free leucine supplementation cannot reverse the lack of recovery of muscle mass after prolonged immobilization during ageing, The Journal of Physiology, vol.928, issue.8, pp.2035-2049, 2012.
DOI : 10.1111/j.1749-6632.2001.tb05651.x

URL : https://hal.archives-ouvertes.fr/hal-01056775

H. Magne, I. Savary-auzeloux, D. Remond, and D. Dardevet, Nutritional strategies to counteract disuse muscle atrophy and improve following recovery, Nutrition Research Reviews, vol.9, pp.1-17, 2013.
DOI : 10.1017/s0954422413000115

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/10F445E40306C81C4E460D1523D572BE/S0954422413000115a.pdf/div-class-title-nutritional-strategies-to-counteract-muscle-atrophy-caused-by-disuse-and-to-improve-recovery-div.pdf

P. Kortebein, A. Ferrando, J. Lombeida, R. Wolfe, and W. Evans, Effect of 10 Days of Bed Rest on Skeletal Muscle in Healthy Older Adults, JAMA, vol.297, issue.16, pp.1772-1774, 2007.
DOI : 10.1001/jama.297.16.1772-b

K. English and D. Paddon-jones, Protecting muscle mass and function in older adults during bed rest. Current opinion in clinical nutrition and metabolic care 2010, pp.34-39

L. Ferrucci, C. Cavazzini, A. Corsi, B. Bartali, C. Russo et al., Biomarkers of frailty in older persons, J Endocrinol Invest, vol.25, pp.10-15, 2002.

R. Cooper, D. Kuh, C. Cooper, C. Gale, D. Lawlor et al., Objective measures of physical capability and subsequent health: a systematic review, Age and Ageing, vol.40, issue.1, pp.14-23, 2011.
DOI : 10.1093/ageing/afq117

I. Rieu, C. Sornet, J. Grizard, and D. Dardevet, Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats, Experimental Gerontology, vol.39, issue.9, pp.1315-1321, 2004.
DOI : 10.1016/j.exger.2004.06.005

L. Mosoni, T. Malmezat, M. Valluy, M. Houlier, and P. Mirand, Muscle and liver protein synthesis adapt efficiently to food deprivation and refeeding in 12-month-old rats, J Nutr, vol.126, pp.516-522, 1996.

D. Dardevet, C. Sornet, D. Taillandier, I. Savary, D. Attaix et al., Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging., Journal of Clinical Investigation, vol.96, issue.5, pp.2113-2119, 1995.
DOI : 10.1172/JCI118264

J. Anthony, T. Anthony, and D. Layman, Leucine supplementation enhances skeletal muscle recovery in rats following exercise, J Nutr, vol.129, pp.1102-1106, 1999.

T. Anthony, J. Anthony, F. Yoshizawa, S. Kimball, and L. Jefferson, Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats, J Nutr, vol.131, pp.1171-1176, 2001.

R. Koopman, A. Wagenmakers, R. Manders, A. Zorenc, J. Senden et al., Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects, AJP: Endocrinology and Metabolism, vol.288, issue.4, pp.645-653, 2005.
DOI : 10.1152/ajpendo.00413.2004

M. Buse and R. S. Leucine, Leucine. A possible regulator of protein turnover in muscle., Journal of Clinical Investigation, vol.56, issue.5, pp.1250-1261, 1975.
DOI : 10.1172/JCI108201

L. Combaret, D. Dardevet, I. Rieu, M. Pouch, D. Bechet et al., A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle, The Journal of Physiology, vol.14, issue.2, pp.489-499, 2005.
DOI : 10.1152/physiolgenomics.00049.2003

D. Dardevet, C. Sornet, G. Bayle, J. Prugnaud, C. Pouyet et al., Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucinesupplemented meal, J Nutr, vol.132, pp.95-100, 2002.

M. Frexes-steed, D. Lacy, C. J. Abumrad, and N. , Role of leucine and other amino acids in regulating protein metabolism in vivo, Am J Physiol, vol.262, pp.925-935, 1992.

C. Katsanos, H. Kobayashi, M. Sheffield-moore, A. Aarsland, and R. Wolfe, Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids, Am J Clin Nutr, vol.82, pp.1065-1073, 2005.

J. Li and L. Jefferson, Influence of amino acid availability on protein turnover in perfused skeletal muscle, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.544, issue.2, pp.351-359, 1978.
DOI : 10.1016/0304-4165(78)90103-4

K. Nakashima, A. Ishida, M. Yamazaki, and H. Abe, Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin???proteasome pathway in chick skeletal muscles, Biochemical and Biophysical Research Communications, vol.336, issue.2, pp.660-666, 2005.
DOI : 10.1016/j.bbrc.2005.08.138

I. Rieu, M. Balage, C. Sornet, C. Giraudet, E. Pujos et al., Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia, The Journal of Physiology, vol.134, issue.1, pp.305-315, 2006.
DOI : 10.1001/jama.286.10.1206

K. Smith, J. Barua, P. Watt, C. Scrimgeour, and M. Rennie, Flooding with L-[1-13C] leucine stimulates human muscle protein incorporation of continuously infused L-[1- 13C]valine, Am J Physiol, vol.262, pp.372-376, 1992.

M. Tischler, M. Desautels, and A. Goldberg, Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle?, J Biol Chem, vol.257, pp.1613-1621, 1982.

J. Anthony, T. Anthony, S. Kimball, T. Vary, and L. Jefferson, Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation, J Nutr, vol.130, pp.139-145, 2000.

P. Atherton, T. Etheridge, P. Watt, D. Wilkinson, A. Selby et al., Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling, American Journal of Clinical Nutrition, vol.92, issue.5, pp.1080-1088, 2010.
DOI : 10.3945/ajcn.2010.29819

URL : http://ajcn.nutrition.org/content/92/5/1080.full.pdf

K. Peyrollier, E. Hajduch, A. Blair, R. Hyde, and H. Hundal, l-Leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the l-leucine-induced up-regulation of System A amino acid transport, Biochemical Journal, vol.350, issue.2, pp.361-368, 2000.
DOI : 10.1042/bj3500361

D. Dardevet, D. Remond, M. Peyron, I. Papet, and I. Savary-auzeloux, Muscle wasting and resistance of muscle anabolism: the «anabolic threshold concept» for adapted nutritional strategies during sarcopenia, ScientificWorldJournal, vol.2012, p.269531

G. Warren, J. Stallone, M. Allen, and S. Bloomfield, Functional recovery of the plantarflexor muscle group after hindlimb unloading in the rat, European Journal of Applied Physiology, vol.93, issue.1-2, pp.130-138, 2004.
DOI : 10.1007/s00421-004-1185-3

M. Papadakis, D. Grady, D. Black, M. Tierney, and G. Gooding, Growth Hormone Replacement in Healthy Older Men Improves Body Composition but Not Functional Ability, Annals of Internal Medicine, vol.124, issue.8, pp.708-716, 1996.
DOI : 10.7326/0003-4819-124-8-199604150-00002

V. Hughes, W. Frontera, M. Wood, W. Evans, G. Dallal et al., Longitudinal Muscle Strength Changes in Older Adults: Influence of Muscle Mass, Physical Activity, and Health, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.56, issue.5, pp.209-217, 2001.
DOI : 10.1093/gerona/56.5.B209

V. Martin, . Ratel, P. Siracusa, . Leruyet, L. Savary-auzeloux et al., Leucine-rich proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy, p.75408, 2013.

B. Komar, L. Schwingshackl, and G. Hoffmann, Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: A systematic review and meta-analysis, The journal of nutrition, health & aging, vol.14, issue.4, pp.437-483
DOI : 10.1016/j.jamda.2013.05.021

V. Martin, S. Ratel, J. Siracusa, C. Bonhomme, L. Combaret et al., Les protéines solubles de lait accélèrent la récupération des aptitudes fonctionnelles musculaires à la suite d'une immobilisation. 10ème Journées Francophones de Nutrition, Nutrition Clinique et Métabolisme, pp.26-47, 2013.

C. Gryson, S. Ratel, M. Rance, S. Penando, C. Bonhomme et al., Four-Month Course of Soluble Milk Proteins Interacts With Exercise to Improve Muscle Strength and Delay Fatigue in Elderly Participants, Journal of the American Medical Directors Association, vol.15, issue.12, p.958, 2014.
DOI : 10.1016/j.jamda.2014.09.011

P. Srere and . Citrate-synthase, [1] Citrate synthase, Methods Enzymol, vol.13, pp.3-11, 1969.
DOI : 10.1016/0076-6879(69)13005-0

B. Essén, E. Jansson, J. Henriksson, A. Taylor, and B. Saltin, Metabolic Characteristics of Fibre Types in Human Skeletal Muscle, Acta Physiologica Scandinavica, vol.91, issue.Suppl. 68, pp.153-65, 1975.
DOI : 10.1038/newbio241017a0

A. Varejao, A. Cabrita, M. Meek, J. Bulas-cruz, and R. Gabriel, Motion of the foot and ankle during the stance phase in rats, Muscle & Nerve, vol.24, issue.5, pp.630-635, 2002.
DOI : 10.1002/1097-4598(200102)24:2<231::AID-MUS80>3.0.CO;2-5

R. Burke, D. Levine, P. Tsairis, and F. Zajac, Physiological types and histochemical profiles in motor units of the cat gastrocnemius, The Journal of Physiology, vol.234, issue.3, pp.723-748, 1973.
DOI : 10.1113/jphysiol.1973.sp010369

Y. Boirie, M. Dangin, P. Gachon, M. Vasson, and J. Maubois, Slow and fast dietary proteins differently modulate postprandial protein accretion, Proceedings of the National Academy of Sciences, vol.88, issue.1, pp.14930-14935, 1997.
DOI : 10.1172/JCI115287

URL : http://www.pnas.org/content/94/26/14930.full.pdf

M. Dangin, Y. Boirie, C. Garcia-rodenas, P. Gachon, and J. Fauquant, The digestion rate of protein is an independent regulating factor of postprandial protein retention, Am J Physiol Endocrinol Metab, vol.280, pp.340-348, 2001.

I. Rieu, M. Balage, C. Sornet, E. Debras, S. Ripes et al., Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats Nutrition, 2007.

B. Pennings, Y. Boirie, J. Senden, A. Gijsen, H. Kuipers et al., Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men, American Journal of Clinical Nutrition, vol.93, issue.5, pp.997-1005, 2011.
DOI : 10.3945/ajcn.110.008102

D. Dardevet, C. Sornet, M. Balage, and J. Grizard, Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age, J Nutr, vol.130, pp.2630-2635, 2000.

E. Glover, S. Phillips, B. Oates, J. Tang, M. Tarnopolsky et al., Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion, The Journal of Physiology, vol.99, issue.24, pp.6049-6061, 2008.
DOI : 10.1152/japplphysiol.00247.2005

T. Järvinen, L. Józsa, P. Kannus, T. Järvinen, and M. Järvinen, Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study, Journal of Muscle Research and Cell Motility, vol.23, issue.3, pp.245-54, 2002.
DOI : 10.1023/A:1020904518336

M. Canepari, M. Pellegrino, D. Antona, G. Bottinelli, and R. , Skeletal muscle fibre diversity and the underlying mechanisms, Acta Physiologica, vol.101, issue.Pt 3, pp.465-76, 2010.
DOI : 10.1152/japplphysiol.00526.2005

J. Holloszy, Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle, J Biol Chem, vol.242, issue.9, pp.2278-82, 1967.

R. Terjung, K. Baldwin, P. Molé, G. Klinkerfuss, and J. Holloszy, Effect of running to exhaustion on skeletal muscle mitochondria: a biochemical study, Am J Physiol, vol.223, issue.3, pp.549-54, 1972.

A. Wagatsuma, N. Kotake, T. Kawachi, M. Shiozuka, S. Yamada et al., Mitochondrial adaptations in skeletal muscle to hindlimb unloading, Molecular and Cellular Biochemistry, vol.289, issue.1-2, pp.1-11, 2010.
DOI : 10.1152/ajpcell.00031.2005

B. Wall, M. Dirks, T. Snijders, F. Stephens, J. Senden et al., Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males, Experimental Gerontology, vol.61, pp.201576-83, 2014.
DOI : 10.1016/j.exger.2014.11.019

Y. Oishi, T. Ogata, K. Yamamoto, M. Terada, T. Ohira et al., Cellular adaptations in soleus muscle during recovery after hindlimb unloading, Acta Physiologica, vol.290, issue.3, pp.381-95, 2007.
DOI : 10.1152/ajpregu.00688.2004

X. Sun and M. Zemel, Leucine modulation of mitochondrial mass and oxygen consumption in skeletal

J. Liu, Y. Peng, Z. Cui, Z. Wu, A. Qian et al., Depressed mitochondrial biogenesis and dynamic remodeling in mouse tibialis anterior and gastrocnemius induced by 4-week hindlimb unloading, IUBMB Life, vol.1777, issue.11
DOI : 10.1016/j.bbabio.2008.05.001

W. Jiang, Sirtuins: Novel targets for metabolic disease in drug development, Biochemical and Biophysical Research Communications, vol.373, issue.3, pp.341-345, 2008.
DOI : 10.1016/j.bbrc.2008.06.048

L. Lantier, J. Fentz, R. Mounier, J. Leclerc, J. Treebak et al., AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity, The FASEB Journal, vol.28, issue.7, p.2014
DOI : 10.1096/fj.14-250449

URL : https://hal.archives-ouvertes.fr/inserm-00979373

H. Westerblad, J. Bruton, and A. Katz, Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability, Experimental Cell Research, vol.316, issue.18, pp.3093-3102, 2010.
DOI : 10.1016/j.yexcr.2010.05.019