L. C. Backer, D. L. Ashley, M. A. Bonin, F. L. Cardinali, S. M. Kieszak et al., Household exposures to drinking water disinfection by-products: whole blood trihalomethane levels, Journal of Exposure Science & Environmental Epidemiology, vol.10, issue.4, pp.321-326, 2000.
DOI : 10.1038/sj.jea.7500098

S. Batterman, L. Z. Zhang, and S. Q. Wang, Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide, Water Research, vol.34, issue.5, pp.1652-1658, 2000.
DOI : 10.1016/S0043-1354(99)00294-8

R. J. Miltner, H. M. Shukairy, and R. S. Summers, Disinfection By-Product Formation and Control by Ozonation and Biotreatment, Journal of the American Water Works Association, vol.84, pp.53-62, 1992.

U. Von-gunten, Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research, vol.37, issue.7, pp.1469-1487, 2003.
DOI : 10.1016/S0043-1354(02)00458-X

F. Hammes, E. Salhi, O. Köster, H. P. Kaiser, T. Egli et al., Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water, Water Research, vol.40, issue.12, pp.2275-2286, 2006.
DOI : 10.1016/j.watres.2006.04.029

K. Sunada, T. Watanabe, and K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, Journal of Photochemistry and Photobiology A: Chemistry, vol.156, issue.1-3, pp.227-233, 2003.
DOI : 10.1016/S1010-6030(02)00434-3

Y. H. Tsuang, J. S. Sun, Y. C. Huang, C. H. Lu, W. H. Chang et al., Studies of Photokilling of Bacteria Using Titanium Dioxide Nanoparticles, Artificial Organs, vol.65, issue.2, pp.167-174, 2008.
DOI : 10.1021/es011423j

K. S. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surface and Coatings Technology, vol.191, issue.2-3, pp.155-160, 2005.
DOI : 10.1016/j.surfcoat.2004.02.022

N. Mellott, C. Durucan, C. Pantano, and M. Guglielmi, Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability, Thin Solid Films, vol.502, issue.1-2, pp.112-120, 2006.
DOI : 10.1016/j.tsf.2005.07.255

H. M. Guan, L. H. Zhu, H. H. Zhou, and H. Q. Tang, Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe, Analytica Chimica Acta, vol.608, issue.1, pp.73-78, 2008.
DOI : 10.1016/j.aca.2007.12.009

D. Wu, M. Long, J. Zhou, W. Cai, X. Zhu et al., Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach, Surface and Coatings Technology, vol.203, issue.24, pp.3728-3733, 2009.
DOI : 10.1016/j.surfcoat.2009.06.008

W. J. Chen, P. J. Tsai, and Y. C. Chen, Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria, Small, vol.156, issue.4, pp.485-491, 2008.
DOI : 10.1021/jp054128k

J. Y. Choi, K. H. Kim, K. C. Choy, K. T. Oh, and K. N. Kim, Photocatalytic Antibacterial Effect of TiO 2 Film Formed on Ti and TiAg Exposed to Lactobacillus acidophilus, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.80, pp.353-359, 2007.

A. Kubacka, M. Ferrer, A. Martnez-arias, and M. Fernández-garca, Ag promotion of TiO2-anatase disinfection capability: Study of Escherichia coli inactivation, Applied Catalysis B: Environmental, vol.84, issue.1-2, pp.87-93, 2008.
DOI : 10.1016/j.apcatb.2008.02.020

A. Kahru, K. Tomson, T. Pall, and I. Külm, Study of Toxicity of Pesticides Using Luminescent Bacteria Photobacterium phosphoreum, Water Science and Technology, vol.33, issue.96, pp.147-1540273, 1996.

R. Barrena, E. Casals, J. Colon, X. Font, A. Sanchez et al., Evaluation of the ecotoxicity of model nanoparticles, Chemosphere, vol.75, issue.7, pp.850-857, 2009.
DOI : 10.1016/j.chemosphere.2009.01.078

R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto et al., Induction of Cytotoxicity by Photoexcited TiO 2 Particles, Cancer Research, vol.52, pp.2346-2348, 1992.

G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, and S. Dukan, The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiology Letters, vol.258, issue.1, pp.18-24, 2006.
DOI : 10.1111/j.1574-6968.2006.00190.x

URL : https://hal.archives-ouvertes.fr/hal-00092800

H. D. Jang, S. K. Kim, and S. J. Kim, Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties, Journal of Nanoparticle Research, vol.3, issue.2/3, pp.141-1471017948330363, 2001.
DOI : 10.1023/A:1017948330363

L. K. Braydich-stolle, N. M. Schaeublin, R. C. Murdock, J. Jiang, P. Biswas et al., Crystal structure mediates mode of cell death in TiO2 nanotoxicity, Journal of Nanoparticle Research, vol.5, issue.1, pp.1361-1374, 2009.
DOI : 10.1161/01.CIR.97.24.2445

T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf et al., Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm, Nano Letters, vol.6, issue.8, pp.1794-1807, 2006.
DOI : 10.1021/nl061025k

N. Singh, B. Manshian, G. J. Jenkins, S. M. Griffiths, P. M. Williams et al., NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials, Biomaterials, vol.30, issue.23-24, pp.3891-3914, 2009.
DOI : 10.1016/j.biomaterials.2009.04.009

N. Gou and A. Z. Gu, A New Transcriptional Effect Level Index (TELI) for Toxicogenomics-based Toxicity Assessment, Environmental Science & Technology, vol.45, issue.12, pp.5410-5417, 2011.
DOI : 10.1021/es200455p

C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu, A. M. Wang et al., Visible Light Photocatalyst for Destruction of Azodyes and Bacteria, The Journal of Physical Chemistry B, vol.110, issue.9, pp.4066-4072, 2006.
DOI : 10.1021/jp0564400

K. Unfried, C. Albrecht, L. O. Klotz, V. Mikecz, A. Grether-beck et al., Cellular responses to nanoparticles: Target structures and mechanisms, Nanotoxicology, vol.286, issue.4, pp.52-71, 2007.
DOI : 10.1166/jnn.2006.194

A. Verma, O. Uzun, Y. Hu, Y. Hu, H. S. Han et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles, Nature Materials, vol.311, issue.7, pp.588-595, 2008.
DOI : 10.1038/nmat2202

URL : https://infoscience.epfl.ch/record/166323/files/2008_verma.pdf

A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding biophysicochemical interactions at the nano???bio interface, Nature Materials, vol.20, issue.7, pp.543-557, 2009.
DOI : 10.1289/ehp.6000

A. Verma and F. Stellacci, Effect of Surface Properties on, Nanoparticle Cell Interactions. Small, vol.6, pp.12-21, 2010.

B. Chance, H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs., Physiological Reviews, vol.59, issue.3, pp.527-605, 1979.
DOI : 10.1152/physrev.1979.59.3.527

P. J. Goodhew and F. J. Humphrey, Electron Microscopy and Analysis, 1988.

B. Batdorj, V. Trinetta, M. Dalgalarrondo, H. Prevost, X. Dousset et al., Isolation, taxonomic identification and hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis T31, isolated from Mongolian yoghurt: inhibitory activity on food-borne pathogens, Journal of Applied Microbiology, vol.2, issue.3, pp.584-593, 2007.
DOI : 10.1067/mob.2003.123

S. Parvez, C. Venkataraman, and S. Mukherji, A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals, Environment International, vol.32, issue.2, pp.265-268, 2006.
DOI : 10.1016/j.envint.2005.08.022

A. Kahru, H. C. Dubourguier, I. Blinova, A. Ivask, and K. Kasemets, Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview, Sensors, vol.28, issue.4, pp.5153-5170, 2008.
DOI : 10.1016/0043-1354(94)90117-1

E. Binaeian, A. M. Rashidi, and H. Attar, Toxicity Study of Two Different Synthesized Silver Nanoparticles on Bacteria Vibrio fischeri, World Academy of Science, Engineering and Technology, vol.67, pp.1219-1225, 2012.

A. Garcia, R. Espinosa, L. Delgado, E. Casals, E. Gonzalez et al., Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests, Desalination, vol.269, issue.1-3, pp.136-141, 2011.
DOI : 10.1016/j.desal.2010.10.052

I. Lopes, R. Ribeiro, F. E. Antunes, T. A. Rocha-santos, M. G. Rasteiro et al., Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium, Ecotoxicology, vol.5, issue.3, pp.637-648, 2012.
DOI : 10.1023/A:1025520116015

G. D. Straganz, A. Glieder, L. Brecker, D. W. Ribbons, and W. Steiner, Acetylacetone-cleaving enzyme Dke1: a novel C-C-bond-cleaving enzyme from Acinetobacter johnsonii, Biochemical Journal, vol.369, issue.3, pp.573-581, 2003.
DOI : 10.1042/bj20021047

C. Massard, M. Bonnet, P. Veisseire, Y. Sibaud, E. Caudron et al., Photokilling of Escherichia coli Using Hybrid Titania Nanoparticles Suspended in an Aqueous Liquid, Journal of Biomaterials and Nanobiotechnology, vol.04, issue.02, pp.137-144, 2013.
DOI : 10.4236/jbnb.2013.42019

URL : https://hal.archives-ouvertes.fr/hal-01543722

J. Wang, C. Li, H. Zhuang, and J. Zhang, Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension, Food Control, vol.34, issue.2, pp.372-377, 2013.
DOI : 10.1016/j.foodcont.2013.04.046

J. Marugán, R. Van-grieken, C. Sordo, and C. Cruz, Kinetics of the photocatalytic disinfection of Escherichia coli suspensions, Applied Catalysis B: Environmental, vol.82, issue.1-2, pp.27-36, 2008.
DOI : 10.1016/j.apcatb.2008.01.002

S. Nair, A. Sasidharan, V. V. Rani, D. Menon, S. Nair et al., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, Journal of Materials Science: Materials in Medicine, vol.7, issue.S1, pp.235-241, 2009.
DOI : 10.1080/10934520600966177

D. P. Tamboli and D. S. Lee, Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria, Journal of Hazardous Materials, vol.260, pp.878-884, 2013.
DOI : 10.1016/j.jhazmat.2013.06.003

S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao et al., Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, vol.18, issue.22, pp.103-112, 2007.
DOI : 10.1088/0957-4484/18/22/225103

M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.2, pp.184-192, 2011.
DOI : 10.1016/j.nano.2010.10.001

H. M. Yadav, S. V. Otari, V. B. Koli, S. S. Mali, C. K. Hong et al., Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity, Journal of Photochemistry and Photobiology A: Chemistry, vol.280, pp.32-38, 2014.
DOI : 10.1016/j.jphotochem.2014.02.006

H. M. Yadav, S. V. Otari, R. A. Bohara, S. S. Mali, S. H. Pawar et al., Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria, Journal of Photochemistry and Photobiology A: Chemistry, vol.294, pp.130-136, 2014.
DOI : 10.1016/j.jphotochem.2014.07.024

R. Van-grieken, J. Marugán, C. Pablos, L. Furones, and A. López, Comparison between the photocatalytic inactivation of Gram-positive E. faecalis and Gram-negative E. coli faecal contamination indicator microorganisms, Applied Catalysis B: Environmental, vol.100, issue.1-2, pp.212-220, 2010.
DOI : 10.1016/j.apcatb.2010.07.034

H. H. Rijnaarts, W. Norde, J. Lyklema, and A. Zehnder, The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion, Colloids and Surfaces B: Biointerfaces, vol.4, issue.4, pp.191-1970927, 1995.
DOI : 10.1016/0927-7765(94)01164-Z

D. F. Juang, P. C. Yang, C. H. Lee, S. C. Hsueh, and T. H. Kuo, Electrogenic capabilities of gram negative and gram positive bacteria in microbial fuel cell combined with biological wastewater treatment, International Journal of Environmental Science & Technology, vol.10, issue.2, pp.781-792, 2011.
DOI : 10.1016/j.elecom.2007.12.009

S. J. Klaine, P. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Hande et al., NANOMATERIALS IN THE ENVIRONMENT: BEHAVIOR, FATE, BIOAVAILABILITY, AND EFFECTS, Environmental Toxicology and Chemistry, vol.27, issue.9, pp.1825-1851, 2008.
DOI : 10.1897/08-090.1

D. A. Pelletier, A. K. Suresh, G. A. Holton, C. K. Mckeown, W. Wang et al., Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability, Applied and Environmental Microbiology, vol.76, issue.24, pp.7981-7989, 2010.
DOI : 10.1128/AEM.00650-10

T. Hamouda, B. Jr, and J. R. , Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli, Journal of Applied Microbiology, vol.56, issue.3, pp.397-403, 2000.
DOI : 10.1016/0278-6915(84)90165-0

I. Sondi and B. Salopek-sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a??model for Gram-negative bacteria, Journal of Colloid and Interface Science, vol.275, issue.1, pp.177-182, 2004.
DOI : 10.1016/j.jcis.2004.02.012

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, pp.37-38, 1972.
DOI : 10.1038/238037a0

O. Carp, C. L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

H. Liu and T. C. Yang, Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light, Process Biochemistry, vol.39, issue.4, pp.475-481, 2003.
DOI : 10.1016/S0032-9592(03)00084-0

J. C. Cushman and H. J. Bohnert, Genomic approaches to plant stress tolerance, Current Opinion in Plant Biology, vol.3, issue.2, pp.117-124, 2000.
DOI : 10.1016/S1369-5266(99)00052-7

J. Lovric, S. J. Cho, F. M. Winnik, and D. Maysinger, Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death, Chemistry & Biology, vol.12, issue.11, pp.1227-1234, 2005.
DOI : 10.1016/j.chembiol.2005.09.008