, Jobs, Transport and Resources

;. Grande-allée-ouest and C. , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 4 Institute of Evolution, Suite, vol.220, issue.3

. Inra-umr1095-genetics, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF), 88 Dr. Aiguader, 08003 Barcelona, Spain. 14 Plant Genome and Systems Biology, 258A Hunt Hall, Davis, CA 95616, USA. 13 Bioinformatics and Genomics Program, vol.5064, 2841.

, Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence, The International Wheat Genome Sequencing Conosrtium, 2018.

, The International Wheat Genome Sequencing Consortium. A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, vol.345, p.1251788, 2014.

B. P. Clavijo, G. Kettleborough, D. Heavens, H. Chapman, J. Lipscombe et al., An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

, Genome Res, vol.27, pp.885-96, 2017.

A. V. Zimin, D. Puiu, R. Hall, S. Kingan, and S. L. Salzberg, The first nearcomplete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience, vol.6, pp.1-7, 2017.

K. Eversole, J. Rogers, B. Keller, R. Appels, and C. Feuillet, Sequencing and assembly of the wheat genome, Achieving sustainable cultivation of wheat, 2017.

C. G. Cole, O. T. Mccann, J. E. Collins, K. Oliver, D. Willey et al., Finishing the finished human chromosome 22 sequence, Genome Biol, vol.9, 2008.
DOI : 10.1186/gb-2008-9-5-r78

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2008-9-5-r78

N. C. Fonville, K. R. Velmurugan, H. Tae, Z. Vaksman, L. J. Mi et al., Genomic leftovers: identifying novel microsatellites, overrepresented motifs and functional elements in the human genome, Sci Rep, vol.6, p.27722, 2016.
DOI : 10.1038/srep27722

URL : https://www.nature.com/articles/srep27722.pdf

J. Dubcovsky and J. Dvorak, Genome plasticity a key factor in the success of polyploid wheat under domestication, Science, vol.316, pp.1862-1868, 2007.

B. Shiferaw, M. Smale, H. Braun, E. Duveiller, M. Reynolds et al., Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Security, vol.5, pp.291-317, 2013.

C. Feuillet, N. Stein, L. Rossini, S. Praud, K. Mayer et al., Integrating cereal genomics to support innovation in the Triticeae, Funct Integr Genomics, vol.12, pp.573-83, 2012.
DOI : 10.1007/s10142-012-0300-5

URL : https://hal.archives-ouvertes.fr/hal-01190714

V. C. Gegas, A. Nazari, S. Griffiths, J. Simmonds, L. Fish et al., A genetic framework for kernel size and shape variation in wheat, Plant Cell, vol.22, pp.1046-56, 2010.
DOI : 10.1105/tpc.110.074153

URL : http://www.plantcell.org/content/22/4/1046.full.pdf

P. Boeven, C. Longin, W. L. Leiser, S. Kollers, E. Ebmeyer et al., Genetic architecture of male floral traits required for hybrid wheat breeding, Theor Appl Genet, vol.129, pp.2343-57, 2016.
DOI : 10.1007/s00122-016-2771-6

B. Wittkop, S. Nagorny, R. Snowdon, W. Friedt, H. Buerstmayr et al., Breeding progress in wheat: dissecting the components of grain yield, Proc 13th Int Wheat Genetics Symp

Z. Ma, D. Zhao, C. Zhang, Z. Zhang, X. Xue et al., Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations, Mol. Genet. Genomics, vol.277, pp.31-42, 2017.

Z. Su, J. S. Lu, Y. Zhang, G. Chao, S. Bai et al., Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat, Mol Breeding, vol.36, p.15, 2016.

B. Huynh, D. E. Mather, A. W. Schreiber, J. Toubia, U. Baumann et al., Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley, Plant Mol Biol, vol.80, pp.299-314, 2012.

H. Sta?ková, A. R. Hastie, S. Chan, J. Vrána, Z. Tulpová et al., Bionano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes, Plant Biotechnol J, vol.14, pp.1523-1554, 2016.

L. Pingault, F. Choulet, A. Alberti, N. Glover, P. Wincker et al., Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome, Genome Biol, vol.16, p.29, 2015.

M. C. Luo, C. Thomas, F. M. You, J. Hsiao, S. Ouyang et al., High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis, Genomics, vol.82, pp.378-89, 2003.

Z. Frenkel, E. Paux, D. Mester, C. Feuillet, and A. Korol, LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes, BMC Bioinformatics, vol.11, p.584, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01189774

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Birol et al., ABySS: a parallel assembler for short read sequence data, Genome Res, vol.19, pp.1117-1140, 2009.
DOI : 10.1101/gr.089532.108

URL : http://genome.cshlp.org/content/19/6/1117.full.pdf

Y. Benjamini and T. P. Speed, Summarizing and correcting the GC content bias in high-throughput sequencing, Nucleic Acids Res, vol.40, 2012.
DOI : 10.1093/nar/gks001

URL : https://academic.oup.com/nar/article-pdf/40/10/e72/16958291/gks001.pdf

S. A. Quarrie, S. Pekic-quarrie, R. Radosevic, D. Rancic, A. Kaminska et al., Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes, J Exp Bot, vol.57, pp.2627-2664, 2006.

G. Wang, X. Zhang, and W. J. Jin, An overview of plant centromeres, Genet Genomics, vol.36, pp.60144-60151, 2009.
DOI : 10.1016/s1673-8527(08)60144-7

L. Comai, M. Shamoni, M. Mohan, and P. A. Marimuthu, Plant centromeres, Current Opinion in Plant Biology, vol.36, pp.158-67, 2017.

H. Yan, P. B. Talbert, H. R. Lee, J. Jett, S. Henikoff et al., Intergenic locations of rice centromeric chromatin, PLoS Biol, vol.6, p.286, 2008.
DOI : 10.1371/journal.pbio.0060286

URL : http://doi.org/10.1371/journal.pbio.0060286

X. Guo, H. Su, Q. Shi, S. Fu, J. Wang et al., De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids, PLoS Genet, vol.12, 2016.
DOI : 10.1371/journal.pgen.1005997

URL : https://doi.org/10.1371/journal.pgen.1005997

D. H. Koo, S. K. Sehgal, B. Friebe, and B. S. Gill, Structure and stability of telocentric chromosomes in wheat, PLoS One, vol.10, 2015.

J. A. Chapman, M. Mascher, A. Buluç, K. Barry, E. Georganas et al., A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome, Genome Biol, vol.16, p.26, 2015.
DOI : 10.1186/s13059-015-0582-8

URL : http://doi.org/10.1186/s13059-015-0582-8

C. J. Pollock and A. J. Cairns, Fructan metabolism in grasses and cereals, Annu Rev Plant Physiol Plant Mol Biol, vol.42, pp.77-101, 1991.
DOI : 10.1146/annurev.arplant.42.1.77

R. K. Dawe, Meiotic chromosome organization and segregation in plants, Annu Rev Physiol Plant Mol Biol, vol.49, pp.371-95, 1998.
DOI : 10.1146/annurev.arplant.49.1.371

M. Kishii, K. Nagaki, and H. Tsujimoto, A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes, Chromosom Res, vol.9, pp.417-445, 2001.

H. S. Malik and S. Henikoff, Conflict begets complexity: the evolution of centromeres, Curr Opin Genet Dev, vol.12, pp.711-719, 2002.
DOI : 10.1016/s0959-437x(02)00351-9

A. A. Myburg, D. Grattapaglia, G. A. Tuskan, U. Hellsten, R. D. Hayes et al., The genome of Eucalyptus grandis, Nature, vol.510, pp.356-62, 2014.
DOI : 10.1038/nature13308

URL : https://hal.archives-ouvertes.fr/hal-01142165

J. M. Barrero, C. Cavanagh, K. L. Verbyla, J. F. Tibbits, A. P. Verbyla et al., Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL, Genome Biol, vol.16, p.93, 2015.
DOI : 10.1186/s13059-015-0665-6

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/s13059-015-0665-6?site=genomebiology.biomedcentral.com

H. Cao, A. R. Hastie, D. Cao, E. T. Lam, Y. Sun et al., Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology, GigaScience, vol.3, 2014.

J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics, vol.21, p.15297300, 2005.
DOI : 10.1093/bioinformatics/bth457

URL : https://academic.oup.com/bioinformatics/article-pdf/21/2/263/456887/bth457.pdf

, Wheat chromosome 7A mate-pair data from flow-sorted chromosomes, 2018.

, IWGSC Wheat chromosome 7A BACs sequenced in pools based on the physical map minimum tiling path (MTP) with Illumina HiSeq 2500, 2018.

, Sequencing of a Chinese spring wheat with 7EL addition from Thinopyrum elongatum, 2018.

, Stage 3 Gydle assembly of chromosome 7A and Bionano assemblies, 2018.

B. E. Huang, A. W. George, K. L. Forrest, A. Kilian, M. J. Hayden et al., A multiparent advanced generation inter-cross population for genetic analysis in wheat, Plant Biotechnol J, vol.10, pp.826-865, 2012.

R. Shah, C. R. Cavanagh, and B. E. Huang, Computationally efficient map construction in the presence of segregation distortion, Theor Appl Genet, vol.127, pp.2585-97, 2014.

D. Sehgal, E. Autrique, R. Singh, M. Ellis, S. Singh et al., Identification of genomic regions for grain yield and yield stability and their epistatic interactions, Sci Rep, vol.7, 2017.

J. Taylor, D. Butler, and . Package, ASMap: efficient genetic linkage map, construction and diagnosis, J Stat Softw, 2017.

D. Bennett, M. Reynolds, D. Mullan, A. Izanloo, H. Kuchel et al., Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments, Theor Appl Genet, vol.125, pp.1473-85, 2012.

J. Taylor and A. Verbyla, R Package wgaim: QTL analysis in bi-parental populations using linear mixed models, J Stat Softw, vol.40, pp.1-18, 2011.

M. Ma, Q. Wang, Z. Li, H. Cheng, Z. Li et al., Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size, Plant J, vol.83, pp.312-337, 2015.