p-adic meromorphic functions f P (f ), g P (g) sharing a small function, ignoring multiplicity

Abstract : Let K be a complete algebraically closed p-adic field of characteristic zero. Let f, g be two transcendental meromorphic functions in the whole field K or meromorphic functions in an open disk that are not quotients of bounded analytic functions. Let P be a polynomial of uniqueness for meromorphic functions in K or in an open disk and let α be a small meromorphic function with regard to f and g. If f P (f) and g P (g) share α ignoring multiplicity orders, then we show that f = g provided that the multiplicity order of zeros of P satisfies certain inequalities. If α is a Moebius function or a non-zero constant, we can obtain more general results on P and if f is an analytic funtion in K or in the disk, we also obtain more precise results. All results follow previous ones obtained for similar meromorphic functions sharing a small function, counting multiplicity. That comes after similar results obtained by Buy Thi Kieu Oanh and Ngo Thi Thu Thuy for complex functions and results obtained by the present authors with Jacqueline Ojeda, counting multiplicity.
Type de document :
Article dans une revue
Contemporary Mathematics, Amer. Math. Soc., 2018
Liste complète des métadonnées

Contributeur : Alain Escassut <>
Soumis le : mardi 13 novembre 2018 - 11:21:55
Dernière modification le : vendredi 23 novembre 2018 - 01:18:27


Boussaf-Escassut .pdf
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01920413, version 1



Kamal Boussaf, Alain Escassut. p-adic meromorphic functions f P (f ), g P (g) sharing a small function, ignoring multiplicity. Contemporary Mathematics, Amer. Math. Soc., 2018. 〈hal-01920413〉



Consultations de la notice


Téléchargements de fichiers