New applications of the p-adic Nevanlinna Theory

Abstract : Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis , here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in l C, we consider functions f n (x)f m (ax + b), g n (x)g m (ax + b) with |a| = 1 and n = m, sharing a rational function and we show that f g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |n−m|∞ ≥ 5, then f n (x)f m (ax+b)−w has infinitely many zeros. Finally, we examine branched values for meromorphic functions f n (x)f m (ax + b).
Type de document :
Article dans une revue
p-Adic Numbers, Ultrametric Analysis and Applications, MAIK Nauka/Interperiodica, 2018
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-clermont-univ.archives-ouvertes.fr/hal-01921858
Contributeur : Alain Escassut <>
Soumis le : mercredi 14 novembre 2018 - 10:29:47
Dernière modification le : vendredi 23 novembre 2018 - 01:18:27

Fichier

mexico-latex,25P.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01921858, version 1

Collections

Citation

Alain Escassut, Ta Thi Hoai An. New applications of the p-adic Nevanlinna Theory. p-Adic Numbers, Ultrametric Analysis and Applications, MAIK Nauka/Interperiodica, 2018. 〈hal-01921858〉

Partager

Métriques

Consultations de la notice

5

Téléchargements de fichiers

5