Complex and p-adic branched functions and growth of entire functions

Abstract : Following a previous paper by Jacqueline Ojeda and the first author, here we examine the number of possible branched values and branched functions for certain p-adic and complex meromorphic functions where numerator and denominator have different kind of growth, either when the denominator is small comparatively to the numerator, or vice-versa, or (for p-adic functions) when the order or the type of growth of the numerator is different from this of the denominator: this implies that one is a small function comparatively to the other. Finally, if a complex meromorphic function f g admits four perfectly branched small functions, then T (r, f) and T (r, g) are close. If a p-adic meromorphic function f g admits four branched values, then f and g have close growth. We also show that, given a p-adic meromorphic function f , there exists at most one small function w such that f − w admits finitely many zeros and an entire function admits no such a small function.
Type de document :
Article dans une revue
Bulletin of the Belgian Mathematical Society - Simon Stevin, Belgian Mathematical Society, 2015
Liste complète des métadonnées

https://hal-clermont-univ.archives-ouvertes.fr/hal-01922099
Contributeur : Alain Escassut <>
Soumis le : mercredi 28 novembre 2018 - 11:14:57
Dernière modification le : jeudi 29 novembre 2018 - 01:19:17

Fichier

Escassut-Boussaf-Ojeda.C.V.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01922099, version 1

Collections

Citation

Alain Escassut, Kamal Boussaf, Jacqueline Ojeda. Complex and p-adic branched functions and growth of entire functions. Bulletin of the Belgian Mathematical Society - Simon Stevin, Belgian Mathematical Society, 2015. 〈hal-01922099〉

Partager

Métriques

Consultations de la notice

15

Téléchargements de fichiers

10