RESOLUTION OF IMPLICIT TIME SCHEMES FOR THE NAVIER-STOKES SYSTEM THROUGH A LEAST-SQUARES METHOD

Abstract : Implicit time schemes reduce the numerical resolution of the Navier-Stokes system to multiple resolutions of steady Navier-Stokes equations. We analyze a least-squares method, introduced by Glowinski in 1979, to solve the steady Navier-Stokes equation. Precisely, we show that any minimizing sequences (constructed by gradient type methods) for a least-squares functional converges strongly toward solutions, assuming the initial guess in an explicit ball dependent of the time step and of the viscosity constant. The resulting method is faster and more robust than the Newton method used to solve the weak variational formulation for the Navier-Stokes. Numerical experiments support our analysis.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal-clermont-univ.archives-ouvertes.fr/hal-01996429
Contributeur : Arnaud Munch <>
Soumis le : lundi 28 janvier 2019 - 13:29:04
Dernière modification le : jeudi 14 février 2019 - 01:20:17

Fichier

NS_LS-JL-AM-Euler-28-01-2019.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01996429, version 1

Collections

Citation

Jérôme Lemoine, Arnaud Munch. RESOLUTION OF IMPLICIT TIME SCHEMES FOR THE NAVIER-STOKES SYSTEM THROUGH A LEAST-SQUARES METHOD. 2019. 〈hal-01996429v1〉

Partager

Métriques

Consultations de la notice

202

Téléchargements de fichiers

48