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Abstract

The routing and spectrum assignment problem in flexgrid elastic op-
tical networks can be modeled in two phases: a selection of paths in the
network and an interval coloring problem in the edge intersection graph
of these paths. The interval chromatic number equals the smallest size of
a spectrum such that a proper interval coloring is possible, the weighted
clique number is a natural lower bound. Graphs where both parameters
coincide for all possible non-negative integral weights are called superper-
fect. We examine the question which minimal non-superperfect graphs
can occur in the edge intersection graphs of paths in different underlying
networks. We show that for any possible network (even if it is restricted
to a path) the resulting edge intersection graphs are not necessarily su-
perperfect and discuss some consequences.

1 Introduction

Flexgrid elastic optical networks constitute a new generation of optical networks
in response to the sustained growth of data traffic volumes and demands in
communication networks. In such networks, light is used as communication
medium between sender and receiver nodes, and the frequency spectrum of an
optical fiber is divided into narrow frequency slots of fixed spectrum width.
Any sequence of consecutive slots can form a channel that can be switched in
the network to create a lightpath (i.e., an optical connection represented by a
route and a channel). The routing and spectrum assignment (RSA) problem
consists of establishing the lightpaths for a set of end-to-end traffic demands,
that is, finding a route and assigning an interval of consecutive frequency slots
for each demand such that the intervals of lightpaths using a same edge in the
network are disjoint, see e.g. [17]. Thereby, the following constraints need to be
respected when dealing with the RSA problem:

∗This work was supported by the French National Research Agency grant ANR-17-CE25-
0006, project FLEXOPTIM.
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1. spectrum continuity : the frequency slots remain the same on all the links
of a route;

2. spectrum contiguity : the frequency slots allocated to a demand must be
contiguous;

3. non-overlapping spectrum: a frequency slot can be allocated to at most
one demand.

The RSA problem is a generalization of the well-studied routing and wavelength
assignment (RWA) problem that is associated with a fixed grid of frequencies
[6]. The former problem has started to receive a lot of attention over the last
few years. It has been shown to be NP-hard [3, 18]. In fact, if for each demand
the route is already known, the RSA problem reduces to the so-called spectrum
assignment (SA) problem and only consists of determining the demands’ chan-
nels. The SA problem has been shown to be NP-hard on paths [16] which makes
the SA problem (and thus also the RSA problem) much harder than the RWA
problem which is well-known to be polynomially solvable on paths, see e.g. [6].

More formally, for the RSA problem, we are given a network G and a set D
of end-to-end traffic demands where each demand is specified by a pair u, v of
distinct nodes in G and the number duv of required frequency slots. The routing
part of the RSA problem consists of selecting a route through G from u to v, i.e.
a (u, v)-path Puv in G, for each such traffic demand. The spectrum assignment
can then be interpreted as an interval coloring of the edge intersection graph
I(P) of the set P of selected paths:

• Each path Puv ∈ P becomes a node of I(P) and two nodes are joined by
an edge if the corresponding paths in G are in conflict as they share an
edge (notice that we do not care whether they share nodes).

• Any interval coloring in this graph I(P) weighted with the demands duv

correctly solves the spectrum assignment: we assign a frequency interval
of duv consecutive frequency slots (spectrum contiguity) to every node of
I(P) (and, thus, to every path Puv ∈ P (spectrum continuity)) in such
a way that the intervals of adjacent nodes are disjoint (non-overlapping
spectrum).

Let d ∈ Z|D|+ be the vector whose entries duv are the slot requirements associated
with the demands between pairs u, v of nodes in D. The interval chromatic
number χI(I(P), d) is the minimum spectrum width such that I(P) weighted
with the vector d of traffic demands duv for each path Puv has a proper interval
coloring. Given G and D, the minimum spectrum width of any solution of the
RSA problem, thus, equals

χI(G,D) = min{χI(I(P), d) : P possible routing of demands D in G}.

For each routing P, the weighted clique number ω(I(P), d), also taking the traffic
demands duv as weights, is a natural lower bound for χI(I(P), d). However, it is
not always possible to find a solution with this lower bound as spectrum width,
as weighted clique number and interval chromatic number are not always equal.
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Graphs where weighted clique number and interval chromatic number coin-
cide for all possible non-negative integral weights are called superperfect.

A graph is perfect if and only if this holds for every (0, 1)-weighting d of
its nodes, thus every superperfect graph is perfect. A graph G = (V,E) is
comparability if and only if there exists a partial order O on V × V such that
uv ∈ E if and only if u and v are comparable w.r.t. O. Comparability graphs
form a subclass of superperfect graphs [12], but there are also superperfect non-
comparability graphs such as e.g. even antiholes [8].

A complete list of minimal non-comparability graphs is presented in [7],
that are
• odd holes C2k+1 for k ≥ 2 and antiholes Cn for n ≥ 6,
• the graphs Jk and J ′k for k ≥ 2 and the graphs J ′′k for k ≥ 3 (see Fig. 1),
• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1 (see Fig. 2),
• the complements of A1, . . . , A10 (see Fig. 3).
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Figure 1: Minimal non-comparability graphs: Jk, J ′k for k ≥ 2 and J ′′k for k ≥ 3.
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Figure 2: Minimal non-comparability graphs: the complements of Dk, Ek, Fk.

The question which minimal non-comparability graphs are superperfect has
been addressed in [1], that are
• even antiholes C2k for k ≥ 3,
• the graphs J ′′k for k ≥ 3,
• the complements of A3, . . . , A10.

Note that Andreae wrongly determined A2 as superperfect which is, in fact,
not the case (see Fig. 4 for a weight vector d and an optimal interval coloring
showing that ω(A2, d) = 5 < 6 = χI(A2, d) holds).

The minimal non-comparability graphs which are not superperfect are thus
minimal non-superperfect: the graphs A1, A2 and all
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Figure 3: Minimal non-comparability graphs: the graphs A1, . . . , A10.
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Figure 4: The graph A2 together with node weights d and an optimal interval
coloring showing ω(A2, d) = 5 < 6 = χI(A2, d).

• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk and J ′k for k ≥ 2,
• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1.

Note that we have ω(G,1) < χI(G,1) with 1 = (1, . . . , 1) if G is an odd
hole or an odd antihole (as they are not perfect), whereas the other minimal
non-superperfect graphs from the list are perfect and, thus, ω(G, d) < χI(G, d)
is attained for some d 6= 1 (see Fig. 4).

We examine, for different underlying networks G, the question whether or
not there is a solution of the RSA problem with

ω(G,D) = min{ω(I(P), d) : P possible routing of demands D in G}

as spectrum width which depends on the occurrence of (minimal) non-
superperfect graphs in the edge intersection graphs I(P).

Note that for some networks G, the edge intersection graphs form well-
studied graph classes: if G is a path (resp. tree, resp. cycle), then I(P) is an
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interval graph (resp. EPT graph, resp. circular-arc graph). However, if G is
a sufficiently large grid, then it is known by [10] that I(P) can be any graph.
Modern optical networks do not fall in any of these classes, but are 2-connected,
sparse planar graphs with small maximum degree with a grid-like structure.

We first study the cases when the underlying network G is a tree or a cy-
cle (see Section 2 and 3). We recall results on EPT graphs and circular-arc
graphs from [9, 5] and then discuss which minimal non-comparability non-
superperfect graphs can occur. In addition, we exhibit new examples of minimal
non-superperfect graphs within these classes.

All of these non-superperfect graphs are inherited for the case when G is an
optical network, and we give also representations as edge intersection graphs
for the remaining minimal non-comparability non-superperfect graphs. In view
of the result on edge intersection graphs of paths in a sufficiently large grid
[10], we expect that any further minimal non-superperfect graph has such a
representation and give some further new examples of such graphs.

To find new examples, we make use of the complete list of minimal non-
comparability graphs found by [7] and the fact that any candidate for a new
minimal non-superperfect graph can neither be imperfect nor a comparability
graph. Thus, among the graphs with n nodes, the candidates of new minimal
non-superperfect graphs are all graphs that are
• perfect (i.e. do not contain odd holes or odd antiholes),
• do not contain any minimal non-superperfect graph with ≤ n nodes,
• contain a minimal non-comparability superperfect graph with < n nodes.

Finally, we propose to extend the concept of χ-binding functions introduced in
[11] for usual coloring to interval coloring in weighted graphs to describe how
large the gap between weighted clique number and interval chromatic number
can be in the worst case.

We close with some concluding remarks and open problems.

2 If the network is a tree

If the underlying communication network G is a tree, then there exists exactly
one (u, v)-path Puv in G for every traffic demand between a pair u, v of nodes.
Hence, if G is a tree, then P and I(P) are uniquely determined for any set D
of end-to-end traffic demands, and the RSA problem reduces to the spectrum
assignment part. The resulting edge intersection graph I(P) belongs to the class
of EPT graphs studied in [9].

We recall results from [9] on holes in EPT graphs and examine which minimal
non-superperfect graphs can occur in such graphs.

It is known from [9] that EPT graphs are not necessarily perfect as they can
contain odd holes. More precisely, Golumbic and Jamison showed the following:

Theorem 1 (Golumbic and Jamison [9]) If the edge intersection graph
I(P) of a collection P of paths in a tree T contains a hole Ck with k ≥ 4, then
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T contains a star K1,k with nodes b, a1, . . . , ak and there are k paths P1, . . . , Pk

in P such that Pi precisely contains the edges bai and bai+1 of this star (where
indices are taken modulo k).

Figure 5 illustrates the case of C5 = I(P).
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Figure 5: The odd hole C5 = I(P) with P in a star.

From the above result, Golumbic and Jamison deduced the possible adjacen-
cies of a hole which further implies that several graphs cannot occur as induced
subgraphs of EPT graphs, including the complement of the P6 and the two
graphs G1 and G2 shown in Figure 6.

Figure 6: The non-EPT graphs G1 and G2.

That P 6 is a non-EPT graph shows particularly that no antihole Ck for
k ≥ 7 can occur in such graphs. This implies:

Theorem 2 (Golumbic and Jamison [9]) An EPT graph is perfect if and
only if it does not contain an odd hole.

Based on this result, we further examine which minimal non-comparability
non-superperfect graphs can occur in edge intersection graphs of paths in a tree:

Theorem 3 If P is a set of paths in a tree, then the EPT graph I(P) can
contain A1, A2 and
• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,
• the graphs Jk and J ′k for all k ≥ 2,
• D2, D3, E1, E2, E3, F 1, F 2, F 3, but none of Dk, Ek, F k for k ≥ 4.

Proof (Sketch) In order to prove the theorem, we will present according path
collections for the affirmative cases and exhibit the non-EPT graph P 6 as com-
mon induced subgraph of the remaining cases.

If P is a set of paths in a tree, then I(P) can contain
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• A1 and A2 (see Fig. 7),
• odd holes C2k+1 for k ≥ 2 by Theorem 1,
• the graphs Jk and J ′k for all k ≥ 2 (see Fig. 8 for a representation of J2

and J ′2 which can be easily extended to all cases for k ≥ 2),
• the graphs D2, D3, E1, E2, E3, F 1, F 2, F 3 (see Fig. 9, Fig. 10, Fig. 11

and Fig. 12).
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Figure 7: The graphs A1 = I(P) and A2 = I(P) with P in a tree.
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Figure 8: The graphs J2 = I(P) and J ′2 = I(P) with P in a path.

1

22 1

a d

c

b
b

c

a d

1

2

3

2

3 1

b

a d

c

b

c

a d

Figure 9: The graphs D2 = I(P) and D3 = I(P) with P in a tree.

That P 6 is not an EPT graph by [9] clearly excludes odd antiholes C2k+1

for k ≥ 3 (see Theorem 2). Note further that the graphs Dk, Ek, Fk contain a
P6 for all k ≥ 4 from their definition, see Fig. 2. Thus, Dk, Ek, F k have a P 6

as induced subgraph, and cannot be EPT graphs. �

This implies that perfect EPT graphs are not necessarily superperfect. We
next examine the situation when we restrict the tree further. A graph is trian-
gulated if it does not have holes Ck with k ≥ 4 as induced subgraph. We can
show the following:
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Figure 10: The graphs E1 = I(P) and E3 = I(P) with P in a tree.
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Figure 11: The graph E2 = I(P) with P in a path.

Lemma 4 If P is a set of paths in a tree with maximum degree 3, then I(P)
is triangulated and can contain Jk and J ′k for all k ≥ 2 and D2, E1, E2.

Proof (Sketch) For that, recall from Theorem 1 that Ck with k ≥ 4 can occur
in EPT graphs only if the tree contains a star K1,k. This implies for the case
where the network is a tree with maximum degree 3 that I(P) cannot contain
any hole Ck with k ≥ 4, hence I(P) is triangulated and from the affirmative
cases of Theorem 3, we can exclude the following graphs:

• all odd holes C2k+1 for k ≥ 2,
• the graphs A1, A2, D3, E3, F 1, F 2, F 3 (that all contain a C4),

whereas the graphs Jk and J ′k for all k ≥ 2 and D2, E1, E2 have an according
representation (see Fig. 8, . . . , Fig. 11). �

This implies that edge intersection graphs of paths in a tree with maximum
degree 3 are perfect (as they neither contain odd holes nor odd antiholes), but
not necessarily superperfect.

Moreover, an interval graph is the intersection graph of intervals in a line.

Lemma 5 If P is a set of paths in a path, then I(P) is an interval graph and
can contain the graphs Jk and J ′k for all k ≥ 2 and E2.

Proof In this case, I(P) is clearly an interval graph (here represented as
subpaths in a path) and from the affirmative cases of Lemma 4, only E2 and
the graphs Jk and J ′k for all k ≥ 2 remain (see their according representations
in Fig. 8 and Fig. 11), whereas D2, E1 are excluded (as known examples of
non-interval graphs from [14]). �
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Figure 12: The graphs F 1 = I(P), F 2 = I(P) and F 3 = I(P) with P in a tree.

This implies that even edge intersection graphs of paths in a path are not
necessarily superperfect.

We next briefly discuss which further minimal non-superperfect graphs can
be EPT graphs. Recall that all of them have to be perfect and have to contain
a minimal non-comparability superperfect graph as proper induced subgraph.
Among the minimal non-comparability superperfect graphs, the following are
EPT graphs:

• C6 (but no even antihole C2k for k ≥ 4 as they all contain P 6),
• none of the graphs J ′′k for all k ≥ 3 (as they all contain G1 induced by the

nodes 1, 2, 3, 4, 5, 2k),
• the graphs A3, . . .A6, A8, . . .A10 (but not A7 as it has a G2).

Hence, any further example of a minimal non-superperfect EPT graph has to
contain one of C6, A3, . . .A6, A8, . . .A10 as proper induced subgraph. Fig.
13 shows one example containing A10 together with a weight vector d caus-
ing a gap between weighted clique and interval chromatic number and a path
representation as EPT graph.
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Figure 13: A minimal non-superperfect EPT graph containing A10.
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3 If the network is a cycle

If the underlying communication network is a cycle C, then there exist exactly
two (u, v)-paths Puv in C for every traffic demand between a pair u, v of nodes.
Hence, if C is a cycle, then the number of possible routings P (and their edge
intersection graphs I(P)) is exponential in the number |D| of end-to-end traffic
demands, namely 2|D|.

Moreover, the edge intersection graphs of paths in a cycle are clearly circular-
arc graphs (that are the intersection graphs of arcs in a cycle, here represented
as paths in a hole Cn).

It is well-known that circular-arc graphs are not necessarily perfect as they
can contain both odd holes and odd antiholes, see e.g. [5] and Fig. 14 for
illustration.
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1

6

4

3
5 2

7

Figure 14: The odd antihole C7 = I(P) with P in a cycle.

In order to address the question which of the studied perfect minimal non-
comparability, non-superperfect graphs can occur in circular-arc graphs, we ei-
ther present according path collections for the affirmative cases or exhibit a
minimal non-circular-arc graph otherwise.

Theorem 6 If P is a set of paths in a cycle, then the circular-arc graph I(P)
can contain A1 but not A2,

• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk and J ′k for all k ≥ 2,
• D2, D3, D4, but not the graphs Dk for k ≥ 5,
• E1 and E2, but not the graphs Ek for k ≥ 3,
• F 2, but not F 1 neither the graphs F k for k ≥ 3.

Proof (Sketch) If P is a set of paths in a cycle, then I(P) can contain odd holes
C2k+1 and odd antiholes C2k+1 for k ≥ 2 (as they are well-known examples of
circular-arc graphs, see e.g. [5] and Fig. 14 for illustration), the graphs Jk and
J ′k for all k ≥ 2 and E2 (as they are, by Lemma 5, examples of interval graphs,
which form by construction a subclass of circular-arc graphs, see Fig. 8 and Fig.
11 for illustration). For the remaining affirmative cases, we can show that the
graphs A1, D2, D3, D4, E1 and F 2 are circular-arc graphs. The corresponding
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collections of paths are given in Fig. 15 for A1 and D2, Fig. 16 for D3 and D4,
Fig. 17 for E1 and F 2.

However, we can show by case analysis that E3 is not a circular-arc graph.
C4 ∪ K1 is a well-known minimal non-circular-arc graph by [2]. A C4 ∪ K1

occurs as induced subgraph of
• A2 (induced by the nodes b, c, d, e and g, see Fig. 7),
• F 1 (induced by the nodes 1 and a, b, d, e, see Fig. 12),
• each of Dk for k ≥ 5 (induced by the nodes b and 1, 2, k − 1, k) and each

of Ek for k ≥ 4 (induced by the nodes b and a, 1, k − 1, k), see Fig. 2 for
the definitions.

The domino is another well-known minimal non-circular-arc graph by [5], and
each of F k for k ≥ 3 contains a domino induced by 1, k, a, b, d, e as subgraph
(see F 3 in Fig. 12 for illustration). �

We next discuss which further minimal non-superperfect graphs can be
circular-arc graphs. Recall that they have to be perfect and have to contain
a minimal non-comparability superperfect proper induced subgraph. Among
the perfect minimal non-comparability superperfect graphs, the following are
circular-arc graphs:
• no even antihole C2k for k ≥ 3 (“folklore”),
• neither J ′′3 (as it can be shown by case analysis to be not a circular-arc

graph) nor the graphs J ′′k for all k ≥ 4 (as they all contain the well-known
minimal non-circular-arc graph K2,3 induced by the nodes 1, 2, 4, 6, 2k),

• all of the graphs A3, . . .A10.
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Remark 7 Note that E3 and J ′′3 are, to the best of our knowledge, new examples
of minimal non-circular-arc graphs (see e.g. the results on circular-arc graphs
surveyed in [5]).

Hence, any further example of a minimal non-superperfect circular-arc graph
has to contain one of A3, . . .A10 as proper induced subgraph. Fig. 18 shows one
example containing A6 together with a weight vector d causing a gap between
weighted clique and interval chromatic number and a path representation as
circular-arc graph.
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Figure 18: A minimal non-superperfect circular-arc graph containing A6.

4 The general case

Modern optical networks have clearly not a tree-like structure neither are just
cycles due to survivability aspects concerning node or edge failures in the net-
work G, see e.g. [13]. Instead, today’s optical networks are 2-connected, sparse
planar graphs with small maximum degree and have more a grid-like structure,
see Fig. 19 showing a network of Spain taken from [15] as example.

We first wonder which minimal non-comparability non-superperfect graphs
can occur in edge intersection graphs of paths in such networks G and can show:
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Figure 19: A network of Spain together with a routing P of a subset of demands
with I(P) = C7.

Theorem 8 All minimal non-comparability non-superperfect graphs can occur
in edge intersection graphs I(P) of sets P of paths in networks G.

Proof (Sketch) In this case, all studied minimal non-superperfect graphs oc-
curring in I(P) when the network G is a tree or a cycle can clearly be present,
hence we conclude from Theorem 3 and Theorem 6 that we have

• A1 and A2 (can occur when G is a tree),
• all odd holes C2k+1 for k ≥ 2 (can occur in both cases),
• all odd antiholes C2k+1 for k ≥ 2 (can occur when G is a cycle),
• the graphs Jk and J ′k for all k ≥ 2 (can occur in both cases),
• the graphs D1, D2, D3 (can occur when G is a cycle),
• E1, E2, E3, F 1, F 2, F 3 (can occur when G is a tree).

Hence, it is left to address the families Dk for k ≥ 5 and Ek, F k for k ≥ 4. We
will present the corresponding collections of paths. For that, we first note that
the graphs Dk, Ek, Fk contain a Pk+2 for all k ≥ 4 from their definition (see Fig.
2), induced by the nodes a, 1, . . . , k, d in Dk and by the nodes a, 1, . . . , k, e in
Ek, F k. Thus, Dk, Ek, F k have a P k+2 which can be represented as circular-arc
graph by using the corresponding paths of a path representation of a sufficiently
large odd antihole in a cycle C.
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In all three cases, the path P (c) of node c needs to be large enough to share
an edge with all paths corresponding to the nodes in this P k+2 (e.g. P (c) can
occupy all but one edge of the cycle C).

For Dk, it is only left to place path P (b) of node b which has to share an
edge only with P (a) and P (d). For that, we add a node z and join it with two
nodes x and y on C being endnodes of P (a) and P (d) on C. We extend P (a)
by the edge xz and P (d) by the edge yz and let occupy P (b) exactly these two
edges xy and yz.

For Ek and F k, it is left to place path P (b) of node b (which has to share an
edge only with P (e)) and path P (d) of node d (which has to share an edge only
with P (a)). We add a node z and join it with two nodes x and y on C being
endnodes of P (a) and P (e) on C. We extend P (a) by the edge xz and P (e) by
the edge yz.

For Ek, P (b) and P (d) must be edge-disjoint: we choose P (b) = yz and
P (d) = xz. For F k, P (b) and P (d) must share an edge: we add a further node
z′, join it with z, and let P (b) = y, z, z′ and P (d) = x, z, z′, see Fig. 20 for
illustration.

k k>5D Ek k>4 Fk k>4

C

z

yx

P(a) P(e)

P(d) P(b)

C

yx

P(a) P(e)

P(d) P(b)
z

z’

C

x y

z

P(a) P(d)
P(b)

Figure 20: Illustration for the path representation of Dk for k ≥ 5 and Ek, F k

for k ≥ 4 as edge intersection graphs of paths in networks.

Hence, the families Dk for k ≥ 5 and Ek, F k for k ≥ 4 have representations
as edge intersection graphs of paths in a sparse planar graph. This finally
proves the theorem. �

In addition, there are further minimal non-superperfect graphs in edge in-
tersection graphs of paths in networks. Fig. 21 shows two examples containing
C6 (the smallest minimal non-comparability superperfect graph) together with
a weight vector d causing a gap between weighted clique and interval chromatic
number. Note that these two graphs are neither EPT graphs (as they contain a
G2 induced by the nodes a, . . . , g) nor circular-arc graphs (as they contain a C6

induced by the nodes a, . . . , f), but have a path representation in sparse planar
graphs.
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Figure 21: Minimal non-superperfect graphs containing C6 and their path rep-
resentations in sparse planar graphs.

We expect that all minimal non-superperfect graphs can occur in edge inter-
section graphs of paths in networks, as soon as the networks G satisfy minimal
survivability conditions concerning edge or node failures.

5 Concluding remarks

From the fact that both, EPT graphs and circular-arc graphs, are not necessarily
perfect, we notice that also edge intersection graphs of paths in networks are not
necessarily perfect and, thus, also not necessarily superperfect. If we restrict
the networks to trees having maximum degree 3, then I(P) is triangulated
(and, thus, perfect), but not necessarily superperfect, and even if we restrict
the networks to paths, then I(P) is an interval graph, but still not necessarily
superperfect (as the minimal non-superperfect graphs Jk and J ′k for all k ≥ 2
and E1 can occur). This is in accordance with the fact that the SA problem
has been showed to be NP-hard on paths [16].

Hence, in all networks, it depends on the weights d induced by the traffic
demands whether there is a gap between the weighted clique number ω(I(P), d)
and the interval chromatic number χI(I(P), d). To determine the size of this
gap, we propose to extend the concept of χ-binding functions introduced in [11]
for usual coloring to interval coloring in weighted graphs, that is, to χI -binding
functions f with

χI(I(P), d) ≤ f(ω(I(P), d))

for edge intersection graphs I(P) in a certain class of networks and all possible
non-negative integral weights d. We can identify for one of the studied families
of minimal non-superperfect graphs such a χI -binding function:

Lemma 9 If I(P) is an odd hole, then χI(I(P), d) ≤ 3
2ω(I(P), d) for all non-

negative integral weights d.
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Note that a network of Spain together with its demands (taken from [15])
is a real instance where a natural routing P yields an edge intersection graph
I(P) with several non-superperfect subgraphs, including an odd hole C7 that
attains the worst-case bound of the χI -binding function.

It is clearly of interest to study such χI -binding functions for other families
of minimal non-superperfect graphs and to identify a hierarchy of graph classes
between trees respectively cycles and sparse planar graphs resembling the struc-
ture of modern optical networks in terms of the gap between ωI(I(P), d) and
χI(I(P), d).

Furthermore, in networks different from trees, the routing part of the RSA
problem is crucial and raises the question whether it is possible to select the
routes in P in such a way that neither non-superperfect graphs nor unnecessarily
large weighted cliques occur in I(P).

Finally, giving a complete list of minimal non-superperfect graphs is
an open problem, so that our future work comprises to find more minimal
non-superperfect graphs and to examine the here addressed questions for them.

Acknowledgment. We would like to thank Martin Safe for interesting discus-
sions on the topic, in particular concerning circular-interval graphs.
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Appendix

We here discuss a network of Spain together with its demands as a real instance
of the RSA problem (taken from [15]), see Fig. 19 for the network and Table 1
for a subset of demands.

index origin s destination t demand dst

1 6 2 3
2 3 8 3
3 5 7 3
4 8 9 3
5 10 6 3
6 4 6 3
7 2 5 3

Table 1: The considered subset of demands

A natural routing P of this subset of demands (see again Fig. 19) yields an
edge-intersection graph I(P) equal to an odd hole C7:

• P6,2 and P3,8 share link l5,
• P3,8 and P5,7 share link l13,
• P5,7 and P8,9 share link l14,
• P8,9 and P10,6 share link l10,
• P10,6 and P4,6 share link l6,
• P4,6 and P2,5 share link l7,
• P2,5 and P6,2 share link l1.

The odd hole C7 together with the weights d = (3, . . . , 3) attains the worst-case
bound of the χI -binding function as it has ω(C7, d) = 6 < 9 = χI(C7, d).
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