A. M. De-livera, D. A. Dias, . .;-de, D. Souza, T. Rupasinghe et al., Normalizing and Integrating Metabolomics Data, Anal. Chem, vol.84, pp.10768-10776, 2012.

W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis?mcintyre et al., Procedures for large?scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat. Protoc, vol.6, pp.1060-1083, 2011.

J. Haggarty and K. E. Burgess, Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome, Curr. Opin. Biotechnol, vol.43, pp.77-85, 2017.

C. A. Smith, E. J. Want, G. O. Maille, R. Abagyan, G. Siuzdak et al., Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification, Anal. Chem, vol.78, pp.779-787, 2006.

R. Wehrens, G. Weingart, and F. Mattivi, metaMS: An open?source pipeline for GC-MS?based untargeted metabolomics, J. Chromatogr. B, vol.966, pp.109-116, 2014.

A. Lommen and . Metalign, Interface?Driven, Versatile Metabolomics Tool for Hyphenated Full?Scan Mass Spectrometry Data Preprocessing, Anal. Chem, vol.81, pp.3079-3086, 2009.

T. Pluskal, S. Castillo, A. Villar?briones, and M. Ore?i?, MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry?based molecular profile data, BMC Bioinform, vol.11, 2010.

O. D. Myers, S. J. Sumner, S. Li, S. Barnes, and X. Du, One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks, Anal. Chem, vol.89, pp.8696-8703, 2017.

A. Smirnov, W. Jia, D. I. Walker, D. P. Jones, X. Du et al., Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High?Resolution Mass Spectrometry Metabolomics Data, J. Proteome Res, vol.17, issue.2, pp.470-478, 2018.

S. O'callaghan, D. P. De-souza, A. Isaac, Q. Wang, L. Hodkinson et al., PyMS: A Python toolkit for processing of gas chromatography?mass spectrometry (GC?MS) data. Application and comparative study of selected tools

X. Domingo?almenara, J. Brezmes, M. Vinaixa, S. Samino, N. Ramirez et al., eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS?Based Metabolomics, Anal. Chem, vol.88, pp.9821-9829, 2016.

O. D. Myers, S. J. Sumner, S. Li, S. Barnes, and X. Du, Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data, Anal. Chem, vol.89, pp.8689-8695, 2017.

J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning

, Springer Series in Statistics, vol.1, 2001.

Z. Zhou, J. Tu, and Z. J. Zhu, Advancing the large?scale CCS database for metabolomics and lipidomics at the machine?learning era, Curr. Opin. Chem. Biol, vol.42, pp.34-41, 2018.

H. Zheng, P. Zheng, L. Zhao, J. Jia, S. Tang et al., Predictive diagnosis of major depression using NMR?based metabolomics and least?squares support vector machine, Clin. Chim. Acta, vol.464, pp.223-227, 2017.

Z. Khitan, A. P. Shapiro, P. T. Shah, J. R. Sanabria, P. Santhanam et al., Predicting Adverse Outcomes in Chronic Kidney Disease Using Machine Learning Methods: Data from the Modification of Diet in Renal Disease, Marshall J. Med, vol.3, p.67, 2017.

C. W. Hsu, C. C. Chang, and C. J. Lin, A Practical Guide to Support Vector Classification, 2003.

G. Libiseller, M. Dvorzak, U. Kleb, E. Gander, T. Eisenberg et al., IPO: A tool for automated optimization of XCMS parameters, BMC Bioinform, vol.16, 2015.

P. H. Kuich, N. Hoffmann, S. Kempa, ?. Maui, and . Via, A User?Friendly Software for Visual Identification, Alignment, Correction, and Quantification of Gas Chromatography-Mass Spectrometry Data, Front. Bioeng. Biotechnol, vol.2, p.84, 2015.

M. R. Nezami-ranjbar, Y. Luo, C. Di-poto, R. S. Varghese, A. Ferrarini et al., GC-MS Based Plasma Metabolomics for Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian Cohort, PLoS ONE, vol.10, 2015.

J. B. Coble and C. G. Fraga, Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery, J. Chromatogr. A, pp.155-164, 1358.

C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann, CAMERA: An integrated strategy for compound spectra extraction and annotation of LC/MS data sets, Anal. Chem, vol.84, pp.283-289, 2012.

D. Chicco, Ten quick tips for machine learning in computational biology, BioData Min, vol.10, 2017.

J. Köster and S. Rahmann, Snakemake-A scalable bioinformatics workflow engine, Bioinformatics, vol.28, pp.2520-2522, 2012.

M. Pietzke, C. Zasada, S. Mudrich, and S. Kempa, Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope?resolved metabolomics, Cancer Metab, vol.2, issue.9, 2014.

K. Haug, R. M. Salek, P. Conesa, J. Hastings, P. De-matos et al., MetaboLights-An open?access general?purpose repository for metabolomics studies and associated meta?data, Nucleic Acids Res, vol.41, pp.781-786, 2013.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI