Formation de la Terre et de Mars : étude expérimentale et numérique

Résumé : La formation des noyaux planétaires métalliques est un évènement majeur pour l’évolution des propriétés physico-chimiques des planètes telluriques telles que nous les connaissons aujourd’hui. En effet, l’abondance des éléments sidérophiles (i.e. qui ont des affinités chimiques avec les phases métalliques) dans les manteaux planétaires s’explique par les conditions dans lesquelles se sont séparées les phases métalliques et silicatées. Au premier rang de ces conditions se trouvent la pression, la température et la fugacité d’oxygène. La distribution des éléments dans le noyau et le manteau ne peut en effet s’expliquer que pour un équilibre obtenu dans un océan magmatique profond, donc à haute pression et haute température ; et dans des conditions d’oxydo-réduction variables, dont l’évolution la plus probable est de passer d’un état réduit à un état oxydé.Un autre paramètre important est la présence ou non d’eau dans l’océan magmatique primitif. En effet, nous disposons de plus en plus d’arguments permettant d’expliquer l’arrivée des éléments volatils, notamment l’eau, pendant l’accrétion, à partir de briques élémentaires qui contiennent ces éléments. Si l’eau est présente tout au long de l’accrétion, et donc pendant la ségrégation du noyau, elle peut donc avoir un effet sur ce dernier phénomène. Dans cette hypothèse, nous avons mené des expériences de haute pression et haute température permettant de modéliser expérimentalement la formation du noyau en condition hydratée. Ces expériences nous ont permis de montrer que la présence d’eau a un effet sur l’évolution de l’état d’oxydation des manteaux planétaires. Cette évolution oxydo-réductive nous a permis de contraindre des modèles d’accrétion basés sur un mélange de chondrites EH et CI, qui confirment des modèles construits à partir de données isotopiques. Ces modèles nous ont permis de contraindre les concentrations primitives maximum en eau probables sur Terre (1,2-1,8 % pds.) et sur Mars (2,5-3,5 % pds.).D’autre part, nos avons mis en évidence le caractère lithophile (i.e. qui a des affinités chimiques avec les phases silicatées) de l’hydrogène à haute pression, a contrario de plusieurs études précédentes. De ce fait, la différence entre les concentrations initiales élevées en eau que nous obtenons dans nos modèles d’accrétion et les concentrations en eau estimées sur Terre et sur Mars actuellement (2000 ppm et 200 ppm, respectivement) ne peut pas être expliquée par un réservoir d’hydrogène dans le noyau.Enfin, pour améliorer les modèles de formation du noyau, nous avons mis en évidence, par des modèles numériques, l’effet important de la viscosité de l’océan magmatique sur le taux d’équilibre entre noyaux et manteaux des planètes telluriques. Cela nous mène à ré-évaluer les modèles de formation des planètes telluriques basés sur des résultats expérimentaux à l’équilibre, notamment l’extension maximale de l’océan magmatique. L’évolution de la viscosité de l’océan magmatique a donc un impact important sur la composition finale des noyaux planétaires (par exemple les teneurs en soufre, oxygène ou silicium des noyaux terrestres et martiens).
Type de document :
Thèse
Sciences de la Terre. Université Blaise Pascal - Clermont-Ferrand II, 2016. Français. 〈NNT : 2016CLF22750〉
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01584212
Contributeur : Abes Star <>
Soumis le : vendredi 8 septembre 2017 - 14:47:08
Dernière modification le : jeudi 19 octobre 2017 - 11:42:08

Fichier

CLESI_2016CLF22750.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01584212, version 1

Citation

. Formation de la Terre et de Mars : étude expérimentale et numérique. Sciences de la Terre. Université Blaise Pascal - Clermont-Ferrand II, 2016. Français. 〈NNT : 2016CLF22750〉. 〈tel-01584212〉

Partager

Métriques

Consultations de
la notice

335

Téléchargements du document

35