Precise Mapping for Retinal Photocoagulation in SLIM (Slit-Lamp Image Mosaicing)

Résumé : Cette thèse est issue d’un accord CIFRE entre le groupe de recherche EnCoV de l’Université Clermont Auvergne et la société Quantel Medical (www.quantel-medical.fr). Quantel Medical est une entreprise spécialisée dans le développement innovant des ultrasons et des produits laser en ophtalmologie. Cette thèse présente un travail de recherche visant à l’application du diagnostic assisté par ordinateur et du traitement des maladies de la rétine avec une utilisation du prototype industriel TrackScan développé par Quantel Medical. Plus précisément, elle contribue au problème du mosaicing précis de l’image de la lampe à fente (SLIM) et du recalage automatique et multimodal en utilisant les images SLIM avec l’angiographie par fluorescence (FA) pour aider à la photo coagulation pan-rétienne naviguée. Nous abordons trois problèmes différents.Le premier problème est lié à l’accumulation des erreurs du recalage en SLIM., il dérive de la mosaïque. Une approche commune pour obtenir la mosaïque consiste à calculer des transformations uniquement entre les images temporellement consécutives dans une séquence, puis à les combiner pour obtenir la transformation entre les vues non consécutives temporellement. Les nombreux algorithmes existants suivent cette approche. Malgré le faible coût de calcul et la simplicité de cette méthode, en raison de sa nature de ‘chaînage’, les erreurs d’alignement s’accumulent, ce qui entraîne une dérive des images dans la mosaïque. Nous proposons donc d’utilise les récents progrès réalisés dans les méthodes d’ajustement de faisceau et de présenter un cadre de réduction de la dérive spécialement conçu pour SLIM. Nous présentons aussi une nouvelle procédure de raffinement local.Deuxièmement, nous abordons le problème induit par divers types d’artefacts communs á l’imagerie SLIM. Ceus-sont liés à la lumière utilisée, qui dégrade considérablement la qualité géométrique et photométrique de la mosaïque. Les solutions existantes permettent de faire face aux blouissements forts qui corrompent entièrement le rendu de la rétine dans l’image tout en laissant de côté la correction des reflets spéculaires semi-transparents et reflets des lentilles. Cela introduit des images fantômes et des pertes d’information. En outre, les méthodes génériques ne produisent pas de résultats satisfaisants dans SLIM. Par conséquent, nous proposons une meilleure alternative en concevant une méthode basée sur une technique rapide en utilisant une seule image pour éliminer les éblouissements et la notion de feux spéculaires semi-transparents en utilisant les indications de mouvement pour la correction intelligente de reflet de lentille.Finalement, nous résolvons le problème du recalage multimodal automatique avec SLIM. Il existe une quantité importante de travaux sur le recalage multimodal de diverses modalités d’image rétinienne. Cependant, la majorité des méthodes existantes nécessitent une détection de points clés dans les deux modalités d’image, ce qui est une tâche très difficile. Dans le cas de SLIM et FA ils ne tiennent pas compte du recalage précis dans la zone maculaire - le repère prioritaire. En outre, personne n’a développé une solution entièrement automatique pour SLIM et FA. Dans cette thèse, nous proposons la première méthode capable de recolu ces deux modalités sans une saisie manuelle, en détectant les repères anatomiques uniquement sur une seule image pour assurer un recalage précis dans la zone maculaire. (...)
Type de document :
Thèse
Computer Vision and Pattern Recognition [cs.CV]. Université Clermont Auvergne, 2017. English. 〈NNT : 2017CLFAC093〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01915998
Contributeur : Abes Star <>
Soumis le : jeudi 8 novembre 2018 - 10:42:06
Dernière modification le : samedi 10 novembre 2018 - 01:09:19

Fichier

2017CLFAC093_PROKOPETC.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01915998, version 1

Citation

Kristina Prokopetc. Precise Mapping for Retinal Photocoagulation in SLIM (Slit-Lamp Image Mosaicing). Computer Vision and Pattern Recognition [cs.CV]. Université Clermont Auvergne, 2017. English. 〈NNT : 2017CLFAC093〉. 〈tel-01915998〉

Partager